首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

2.
Chemical and morphological changes of incipient to advanced stages of palo podrido, an extensively delignified wood, and other types of white rot decay found in the temperate forests of southern Chile were investigated. Palo podrido is a general term for white rot decay that is either selective or nonselective for the removal of lignin, whereas palo blanco describes the white decayed wood that has advanced stages of delignification. Selective delignification occurs mainly in trunks of Eucryphia cordifolia and Nothofagus dombeyi, which have the lowest lignin content and whose lignins have the largest amount of β-aryl ether bonds and the highest syringyl/guaiacyl ratio of all the native woods included in this study. A Ganoderma species was the main white rot fungus associated with the decay. The structural changes in lignin during the white rot degradation were examined by thioacidolysis, which revealed that the β-aryl ether-linked syringyl units were more specifically degraded than the guaiacyl ones, particularly in the case of selective delignification. Ultrastructural studies showed that the delignification process was diffuse throughout the cell wall. Lignin was first removed from the secondary wall nearest the lumen and then throughout the secondary wall toward the middle lamella. The middle lamella and cell corners were the last areas to be degraded. Black manganese deposits were found in some, but not all, selectively delignified samples. In advanced stages of delignification, almost pure cellulose could be found, although with a reduced degree of polymerization. Cellulolytic enzymes appeared to be responsible for depolymerization. A high brightness and an easy refining capacity were found in an unbleached pulp made from selectively delignified N. dombeyi wood. Its low viscosity, however, resulted in poor resistance properties of the pulp. The last stage of degradation (i.e., decomposition of cellulose-rich secondary wall layers) resulted in a gelatinlike substance. Ultrastructural and chemical analyses of this substance showed the matrix to have no microfibrillar structure characteristic of woody cell walls but to still be rich in glucan.  相似文献   

3.
《Biomass》1988,15(2):93-101
Different rates of wood decay and ligninolytic activity were found in wood decayed by various white-rot fungi. Chemical and ultrastructural analyses showed wood decayed by Coriolus versicolor consisted of a nonselective attack on all cell wall components. Lignin degradation was restricted to the cell wall adjacent to hyphae or around the circumference of cell lumina. Decay by Phellinus pini, Phlebia tremellosus, Poria medullapanis and Scytinostroma galactinum was selective for lignin degradation. Secondary walls were void of lignin and middle lamellae were extensively degraded. A diffuse attack on lignin occurred throughout all cell wall layers. Variation in ligninolytic activity was found among strains of Phanerochaete chrysosporium. Differences in weight loss as well as lignin and polysaccharide degradation were also found when wood of different coniferous and deciduous tree species was decayed by various white-rot fungi.  相似文献   

4.
Progressive changes in solubility characteristics and lignin content of Pinus radiata sapwood were assessed when small blocks were subjected to decay by brown (Gloeophyllum trabeum) and white (Perenniporia tephropora) rot fungi. The brown rot species removed lignin in approximate proportion to weight loss up to 10%; thereafter the amount of lignin altered little. In contrast, the decline in lignin content was near linear for P. tephropora. Increases in solubility (particularly with hot water and dilute alkali), in sugar content and in the acidity of aqueous extracts were recorded in wood blocks decayed to 15–20% weight loss. While these effects were more pronounced in samples decayed by G. trabeum, it appears that with both organisms structural components were degraded faster than the products could be utilised. In this case, cell wall chemistry may not have been a major determinant of weight losses.  相似文献   

5.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

6.
The production of the H(2)O(2)-generating enzyme pyranose oxidase (POD) (EC 1.1.3.10) (synonym, glucose 2-oxidase), two ligninolytic peroxidases, and laccase in wood decayed by three white rot fungi was investigated by correlated biochemical, immunological, and transmission electron microscopic techniques. Enzyme activities were assayed in extracts from decayed birch wood blocks obtained by a novel extraction procedure. With the coupled peroxidase-chromogen (3-dimethylaminobenzoic acid plus 3-methyl-2-benzothiazolinone hydrazone hydrochloride) spectrophotometric assay, the highest POD activities were detected in wood blocks degraded for 4 months and were for Phanerochaete chrysosporium (149 mU g [dry weight] of decayed wood), Trametes versicolor (45 mU g), and Oudemansiella mucida (1.2 mU g), corresponding to wood dry weight losses of 74, 58, and 13%, respectively. Mn-dependent peroxidase activities in the same extracts were comparable to those of POD, while lignin peroxidase activity was below the detection limit for all fungi with the veratryl alcohol assay. Laccase activity was high with T. versicolor (422 mU g after 4 months), in trace levels with O. mucida, and undetectable in P. chrysosporium extracts. Evidence for C-2 specificity of POD was shown by thin-layer chromatography detection of 2-keto-d-glucose as the reaction product. By transmission electron microscopy-immunocytochemistry, POD was found to be preferentially localized in the hyphal periplasmic space of P. chrysosporium and O. mucida and associated with membranous materials in hyphae growing within the cell lumina or cell walls of partially and highly degraded birch fibers. An extracellular distribution of POD associated with slime coating wood cell walls was also noted. The periplasmic distribution in hyphae and extracellular location of POD are consistent with the reported ultrastructural distribution of H(2)O(2)-dependent Mn-dependent peroxidases. This fact and the dominant presence of POD and Mn-dependent peroxidase in extracts from degraded wood suggest a cooperative role of the two enzymes during white rot decay by the test fungi.  相似文献   

7.
Seventeen isolates from white rotted beech wood and six strains from a local culture collection were evaluated for their capability to delignify beech and spruce wood selectively. Six peroxidase-positive isolates were found using a colorimetric agar plate test (Poly R-478), and genetically identified by their internal transcribed spacer (ITS1) or 28S rDNA sequences. Colonised on beech and spruce wood veneers, some of the peroxidase-positive isolates caused selective white rot on both wood species. Weight loss and lignin content of the degraded veneers were estimated from FT-NIR spectra with established linear regression models and multivariate models based on partial least squares regression (PLSR). Weight loss of the samples was also determined gravimetrically. A measure for the relative selectivity of the strains for lignin degradation was formulated and the values were calculated. Two strains that were identified as Oxyporus latemarginatus and Trametes cervina exhibited high selectivity on spruce wood, but the lignin content of the decayed wood was higher than that degraded by the reference strain Ceriporiopsis subvermispora. One strain – identified as Phlebia tremellosa – led to a lower lignin content of beech wood but caused also comparably high weight loss and thus exhibited an overall lower selectivity. The NIR spectroscopic method proved to be convenient for the quick screening of selective white rot fungi. Furthermore, the results revealed that high selectivity for lignin degradation is much more pronounced in early degradation stages.  相似文献   

8.
Using an anti-lignin peroxidase antiserum-protein A-gold complex, we found lignin peroxidase mainly intracellularly in several white rot fungi colonizing sawdust under laboratory conditions. This enzyme was also present in fungi found in naturally decayed wood. However, in all cases, lignin peroxidase was located mainly inside the fungal cells. Labeled lignin peroxidase did not bind to the lignocellulosic samples tested, with the exception of poplar milled-wood lignin. These results are discussed in relation to the role of lignin peroxidase during wood degradation.  相似文献   

9.
Kim JS  Awano T  Yoshinaga A  Takabe K 《Planta》2012,235(6):1209-1219
The ultrastructure of the innermost surface of Cryptomeria japonica differentiating normal wood (NW) and compression wood (CW) was comparatively investigated by field emission electron microscopy (FE-SEM) combined with enzymatic degradation of hemicelluloses. Cellulose microfibril (CMF) bundles were readily observed in NW tracheids in the early stage of secondary cell wall formation, but not in CW tracheids because of the heavy accumulation of amorphous materials composed mainly of galactans and lignin. This result suggests that the ultrastructural deposition of cell wall components in the tracheid cell wall differ between NW and CW from the early stage of secondary cell wall formation. Delignified NW and CW tracheids showed similar structural changes during differentiating stages after xylanase or β-mannanase treatment, whereas they exhibited clear differences in ultrastructure in mature stages. Although thin CMF bundles were exposed in both delignified mature NW and CW tracheids by xylanase treatment, ultrastructural changes following β-mannanase treatment were only observed in CW tracheids. CW tracheids also showed different degradation patterns between xylanase and β-mannanase. CMF bundles showed a smooth surface in delignified mature CW tracheids treated with xylanase, whereas they had an uneven surface in delignified mature CW tracheids treated with β-mannanase, indicating that the uneven surface of CMF bundles was related to xylans. The present results suggest that ultrastructural deposition and organization of lignin and hemicelluloses in CW tracheids may differ from those of NW tracheids.  相似文献   

10.
Evidence of fungal activity expressed as typical decay patterns is described from silicified podocarpaceous wood from the Eocene of Patagonia, Argentina. Decay features consist of tracheids of the secondary xylem that are degraded, resulting in thin-celled, lignin-free, translucent, circular to elliptical areas, some of which have cells devoid of all cell wall components including lignin, hemicellulose, and cellulose, and other areas that show only partial simultaneous decay of all cell wall layers. These patterns conform to the white rot and its variant white pocket rot decay patterns produced by basidiomycetes and ascomycetes in gymnosperm and angiosperm wood in modern terrestrial ecosystems. Coagulated opaque bodies in the lumen of some cells and enlarged secondary walls may represent host reactions to infection or remains of metabolic products of fungal enzymatic activity. Similar decay patterns and reaction features have been described from fossil woods ranging in age from the Devonian to the present. This record expands the fossil record of wood rot fungi and underscores their importance as drivers of biological cycles in ancient terrestrial ecosystems.  相似文献   

11.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

12.
Seventeen isolates from white rotted beech wood and six strains from a local culture collection were evaluated for their capability to delignify beech and spruce wood selectively. Six peroxidase-positive isolates were found using a colorimetric agar plate test (Poly R-478), and genetically identified by their internal transcribed spacer (ITS1) or 28S rDNA sequences. Colonised on beech and spruce wood veneers, some of the peroxidase-positive isolates caused selective white rot on both wood species. Weight loss and lignin content of the degraded veneers were estimated from FT-NIR spectra with established linear regression models and multivariate models based on partial least squares regression (PLSR). Weight loss of the samples was also determined gravimetrically. A measure for the relative selectivity of the strains for lignin degradation was formulated and the values were calculated. Two strains that were identified as Oxyporus latemarginatus and Trametes cervina exhibited high selectivity on spruce wood, but the lignin content of the decayed wood was higher than that degraded by the reference strain Ceriporiopsis subvermispora. One strain – identified as Phlebia tremellosa – led to a lower lignin content of beech wood but caused also comparably high weight loss and thus exhibited an overall lower selectivity. The NIR spectroscopic method proved to be convenient for the quick screening of selective white rot fungi. Furthermore, the results revealed that high selectivity for lignin degradation is much more pronounced in early degradation stages.  相似文献   

13.
Wood from aspen and birch that had been decayed for 12 weeks by Phlebia tremellosus had averages of 30 and 31% weight loss, respectively, and 70% lignin loss. Digestibility increased from averages of 21 and 13% for sound aspen and birch to 54 and 51% for decayed aspen and birch. Individual wood sugar analyses of decayed birch blocks indicated an average loss of 10% glucose, 45% xylose, and 19% mannose. Micromorphological studies demonstrated the removal of middle lamellae and separation of cells. Vessels also separated at perforation plates. Electron microscopy with OsO4-glutaraldehyde-fixed and KMnO4-fixed wood showed that lignin was progressively removed first from the secondary cell wall layers, beginning at the lumen surface, and later from the compound middle lamella. Extensive degradation of lignin was found throughout the secondary wall and middle lamella region between cells. In cells with advanced decay, the middle lamella between cells was completely degraded, but cell corner regions remained.  相似文献   

14.
Beech wood (Fagus sylvatica L.) veneers were cultivated with white and brown rot fungi for up to 10 weeks. Fungal wood modification was traced with Fourier transform near infrared (FT-NIR) and Fourier transform mid infrared (FT-MIR) methods. Partial least square regression (PLSR) models to predict the total lignin content before and after fungal decay in the range between 17.0% and 26.6% were developed for FT-MIR transmission spectra as well as for FT-NIR reflectance spectra. Weight loss of the decayed samples between 0% and 38.2% could be estimated from the wood surface using individual PLSR models for white rot and brown rot fungi, and from a model including samples subjected to both degradation types.  相似文献   

15.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

16.
Kraft pulps, prepared from softwoods, and small chips of birch wood were treated with heme and tert-butyl hydroperoxide in aqueous solutions at reflux temperature. Analyses of treated pulps showed decreases in kappa number (a measure of lignin content) from about 36 to less than 2, with concomitant increases in brightness (80% increase in the better samples). Analyses of treated wood chips revealed selective delignification and removal of hemicelluloses. After 48 h of treatment, lignin losses from the wood chips approached 40%, and xylose/mannose (hemicellulose) losses approached 70%, while glucose (cellulose) losses were less than 10%. Examination of delignified chips by transmission electron microscopy showed that the removal of lignin occurred in a manner virtually indistinguishable from that seen after decay by white rot fungi. Various metalloporphyrins, which act as biomimetic catalysts, were compared to horseradish peroxidase and fungal manganese peroxidase in their abilities to oxidize syringaldazine in an organic solvent, dioxane. The metalloporphyrins and peroxidases behaved similarly, and it appeared that the activities of the peroxidases resulted from the extraction of heme into the organic phase, rather than from the activities of the enzymes themselves. We concluded that heme-tert-butyl hydroperoxide systems in the absence of a protein carrier mimic the decay of lignified tissues by white rot fungi.  相似文献   

17.
The distribution of lignin peroxidase during degradation of both wood and woody fragments by the white rot fungus Phanerochaete chrysosporium was investigated by using anti-lignin peroxidase in conjunction with postembedding transmission electron microscopy and immuno-gold labeling techniques. The enzyme was localized in the peripheral regions of the fungal cell cytoplasm in association with the cell membrane, fungal cell wall, and extracellular slime materials. In solid wood, lignin peroxidase was detected in low concentrations associated with both superficial and degradation zones within secondary cell walls undergoing fungal attack. A similar but much greater level of extracellular peroxidase activity was associated with wood fragments degraded by the fungus grown under liquid culture conditions optimal for production of the enzyme. Efforts to infiltrate degraded wood pieces with high levels of lignin peroxidase showed the enzyme to be restricted to superficial regions of wood decay and to penetrate wood cell walls only where the wall structure had been modified. In this respect the enzyme was able to penetrate characteristic zones of degradation within the secondary walls of fibers to sites of lignin attack. This suggests a possibility for a close substrate-enzyme association during wood cell wall degradation.  相似文献   

18.
Xylobolus frustulatus caused a distinct pocket rot in decorticated oak. Polymerization products appeared to accumulate in advance of delignified wood to form barriers to decay. Medullary ray parenchyma and earlywood vessels were not readily degraded and remained between pockets of decay. Chemical analyses indicated that 97% lignin, 96% xylose, and 69% mannose were removed from pockets of wood during incipient decay. Although 53% of the cellulose was removed from these areas, the remaining white tissues were composed of relatively pure cellulose. Hyphae became abundant as the released cellulose was subsequently removed. In the most advanced stages of decay, hyphae were absent from pockets, and only a sparse lining of crystals, found to contain a high concentration of calcium, remained.  相似文献   

19.
研究了白腐菌及纤维素复合酶对稻草秸秆的协同生物降解。结果表明,利用黄孢原毛平革菌固态发酵稻草秸秆的过程中,LiP和MnP的最大活力可以达到28.3U/g和12.6U/g,同时,秸秆中的木质素能被有效降解,但纤维素、半纤维素降解率较低。添加黑曲霉所产的纤维素复合酶能有效地促进秸秆腐熟程度。在接入白腐菌培养10天后,每克稻草添加3 IU纤维素酶液并酶解48h可以使稻草秸秆中纤维素降解53.8%,半纤维素降解57.8%,木质素降解44.5%,干物质损失46.3%。此时细胞壁出现大范围破损,整个组织变得松散,秸秆完全腐熟。  相似文献   

20.
Colloidal gold coupled to endo-1,4-beta-glucanase II (EG II) and 1,4-beta-D-glucan cellobiohydrolase I (CBH I), isolated from Trichoderma reesei (QM9414), and endo-1,4-beta-xylanase from Aureobasium pullulans (NRRLY-2311-1) was used successfully to determine the ultrastructural localization of cellulose and xylan in sound birch wood. In addition, these enzyme-gold complexes demonstrated the distribution of cellulose and xylan after decay by three white rot fungi, Phanerochaete chrysosporium, Phellinus pini, and Trametes versicolor, and one brown rot fungus, Fomitopis pinicola. Transverse sections of sound wood showed that EG II was localized primarily on the S(1) layer of the secondary wall, whereas CBH I labeled all layers of the secondary wall. Oblique sections showed a high concentration of gold labeling, using EG II or CBH I. Preference for the sides of the microfibrillar structure was observed for both EG II and CBH I, whereas only CBH I had a specificity for the cut ends of microfibrils. Labeling with the xylanase-gold complex occurred primarily in the inner regions of the S(2) layer, S(1), and the middle lamella. In contrast, little labeling occurred in the middle lamella with EG II or CBH I. Intercellular regions within the cell corners of the middle lamella were less electron dense and labeled positively when EG II- and xylanase-gold were used. Wood decayed by P. chrysosporium or P. pini was delignified, and extensive degradation of the middle lamella was evident. The remaining secondary walls labeled with EG II and CBH I, but little labeling was found with the xylanase-gold complex. Wood decayed by T. versicolor was nonselective, and erosion of all cell wall layers was apparent. Remaining wall layers near sites of erosion labeled with both EG II and CBH I. Erosion troughs that reached the S(1) layer or the middle lamella had less xylanase-gold labeling in the adjacent cell wall that remained. Brown-rotted wood had very low levels of gold particles present in sections treated with EG II or xylanase. Labeling with CBH I had the lowest concentrations in the S(2) layer near cell lumina and corresponded to sites with the most extensive degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号