首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We aimed to reveal the effects of range expansion and subsequent lineage admixture from separated glacial refugia on genetic diversity of Kalopanax septemlobus in Japan, by combining nuclear microsatellite data and ecological niche modelling. Allelic richness and gene diversity were compared at the population and regional level. We also statistically examined these indices as a function of population accessibility to the last glacial maximum (LGM) palaeodistribution reconstructed by ecological niche modelling to test a simple range expansion scenario from glacial refugia. Genetic diversity was highest in the populations of southern Japan and gradually decreased towards the north. However, an additional centre of genetic diversity, when measured as gene diversity, was found in northern Honshu Island, where distinct lineages were shown to be in contact. Positive effects of population accessibility to the LGM range were detected in both diversity indices at different spatial scales. The combined data support independent postglacial range expansions towards the north from the edge populations on the exposed coastal shelf of Pacific and Sea of Japan in northern Honshu during the LGM, which subsequently resulted in markedly low genetic diversity in the northernmost extant range, Hokkaido. The regional increase in gene diversity in northern Honshu is likely to be the result of postglacial lineage admixture. Relative difference in the spatial scales best relating population genetic diversity with the LGM distribution can be explained by a higher rate of allelic richness diversity loss during range expansions and stronger effects of lineage admixture on gene diversity.  相似文献   

2.
Aim  The aim of this study is to analyse the genetic population structure of Meum athamanticum Jacq. in order to explore the alternative hypotheses (1) that the central and northern highland populations are the result of post-glacial recolonization from southern refugia, and the disjunct distribution of M. athamanticum can be explained by modern ecological conditions, or (2) that extant populations north of the Alps and Pyrenees persisted in situ during glacial periods.
Location  Europe.
Methods  Variation of amplified fragment length polymorphisms (AFLPs) was analysed for 23 populations from the entire range of the species. We used band-based approaches and methods based on allele frequencies to measure genetic diversity and to identify population structure.
Results  Our analyses reveal a north–south differentiation within M. athamanticum . High levels of genetic diversity, as well as private fragments, are found in populations both north and south of the Alps. Differentiation among populations is lower in the northern than in the southern population group, and significant isolation-by-distance is found only in the latter group.
Main conclusions  Our results indicate that M. athamanticum survived the last ice age in multiple refugia throughout its contemporary range and did not expand into areas north of the Alps from southern refugia. We found evidence that regional-scale migration in northern, formerly periglacial, parts of the species range has resulted in the intermingling of populations. In contrast, southern populations are characterized by long-term isolation. The south-west Alps represent an area where immigration and mixing of populations from northern and southern refugia appears to have taken place.  相似文献   

3.
? Premise of the Study: Intraspecific variation among 20 populations of Podostemum ceratophyllum Michx. was investigated to test the hypothesis of range expansion from southern refugia since the last glacial maximum. ? Methods: Six noncoding regions of chloroplast DNA were sequenced in 60 individuals. Populations were divided into two groups, north and south of the glacial boundary, in addition to isolated populations in Arkansas and Honduras. Variation in populations north of the boundary was compared with variation in populations to the south and in the isolated populations. ? Key Results: Nucleotide diversity was an order of magnitude lower in populations north of the glacial boundary than in those to the south. The Arkansas and Honduras populations showed no variation. The predominant haplotype in northern populations was also found in a Virginia population. ? Conclusions: Reduced variation north of the glacial boundary suggests a founder event associated with range expansion since the last glacial maximum. Colonization probably occurred from populations in refugia located several hundred kilometers south of the glacial boundary. The results provide insight into the effects of past and current climate change on patterns of geographic distribution and genetic variation in aquatic plants.  相似文献   

4.
Phylogeography is often used to investigate the effects of glacial cycles on current genetic structure of various plant and animal species. This approach can also identify the number and location of glacial refugia as well as the recolonization routes from those refugia to the current locations. To identify the location of glacial refugia of the Yellow‐spotted mountain newt, Neurergus derjugini, we employed phylogeography patterns and genetic variability of this species by analyzing partial ND4 sequences (867 bp) of 67 specimens from 15 sampling localities from the whole species range in Iran and Iraq. Phylogenetic trees concordant with haplotype networks showed a clear genetic structure among populations as three groups corresponding to the populations in the north, center, and south. Evolutionary ages of clades north and south ranging from 0.15 to 0.17 Myr, while the oldest clade is the central clade, corresponding to 0.32 Myr. Bayesian skyline plots of population size change through time show a relatively slight increase until about 25 kyr (around the last glacial maximum) and a decline of population size about 2.5 kyr. The presence of geographically structured clades in north, center, and south sections of the species range signifies the disjunct populations that have emerged in three different refugium. This study illustrates the importance of the effect of previous glacial cycles in shaping the genetic structure of mountain species in the Zagros range. These areas are important in terms of long‐term species persistence and therefore valuable areas for conservation of biodiversity.  相似文献   

5.
The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman, Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades of S. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.  相似文献   

6.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

7.
North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles.  相似文献   

8.
The distribution of many species inhabiting northwestern North America has been heavily influenced by the climatic changes during the late Pleistocene. Several studies have suggested that species were restricted to glacial refugia north and/or south of the continental ice sheet front. It is also hypothesized that the coast of northwestern North America could have been a prime location for glacial refugia because of the lowering of the eustatic sea level and the concomitant rise of the continental shelf because of tectonic rebound. Alternatively, some coastal species distributions and demographics may have been unaffected in the long-term by the last glacial maximum (LGM). We tested the glacial refugium hypothesis on an obligate coastal plant species, Carex macrocephala by sampling 600 individuals from 41 populations with 11 nuclear microsatellite loci and the rpL16 plastid intragenic spacer region. The microsatellite data sets suggest a low level of population differentiation with a standardized G 'ST = 0.032 and inbreeding was high with an F  =   0.969. The homogenization of the populations along the coast was supported by a principal coordinate analysis, amova s and samova analyses. Analyses using the rpL16 data set support the results of the microsatellite analyses, with a low F ST of 0.042. Coalescent and mismatch analyses using rpL16 suggest that C. macrocephala has not gone through a significant bottleneck within the past 100 000 years, although a much earlier population expansion was indicated by the mismatch analysis. Carex macrocephala exhibits the characteristics of metapopulation dynamics and on the basis of these results, we concluded that it was not restricted to glacial refugia during the LGM, but that it existed as a large metapopulation.  相似文献   

9.
Genetic variation of Avicennia marina in the costal area of Vietnam was examined using microsatellite and AFLP markers. By using five microsatellite loci a total of 21 alleles were detected. The average number of alleles per locus per population ranged from 1.667 to 3.000. The observed heterozygosity varied from 0.180 to 0.263, with an average of 0.210 indicating relatively low level of genetic variation comparing to the previous studies on A. marina in the worldwide range. The expected heterozygosity was larger than the observed heterozygosity leading to positive inbreeding coefficients in all the six populations. Highly significant departures from Hardy-Weinberg Equilibrium were detected in four populations. AFLP analysis revealed a total of 386 loci, of which 232 (60.1%) were polymorphic. In congruent with microsatellite markers relatively low levels of genetic variation were detected at both gene and nucleotide levels (H = 0.086; pi = 0.0054). Reduced level of genetic variation was found in the central population, and in the southern populations. Both microsatellite and AFLP markers revealed large genetic differentiation (F(ST) = 0.262 and 0.338, respectively) indicating strong genetic structure among regional populations. Pairwise genetic distance by AFLP showed two populations in the north and the other two in the south are closely related each other.  相似文献   

10.
Hairy woodpeckers Picoides villosus are a common, year round resident with distinct plumage and morphological variation across North America. We genotyped 335 individuals at six variable microsatellite loci and analyzed 322 mtDNA control region sequences in order to examine the role of contemporary and historical barriers to gene flow. In addition we combined genetic analyses with ecological niche modelling to test if hairy woodpeckers were isolated in northern refugia (Alaska, Newfoundland and the Queen Charlotte Islands) during the last glacial maximum. Genetic analyses revealed that gene flow among North American hairy woodpecker populations is restricted, but not to the extent predicted for a sedentary species. Populations clustered into two main genetic groups, east and west of the Great Plains in the south and the Rocky Mountains in the north. Contact zones between the two main genetic groups exist in central British Columbia and Washington, but are narrow. Within each group we found additional population structure with genetic breaks between subgroups in the geographic west corresponding to breaks in forested habitat and physical barriers like open expanses of water. Population genetic patterns for hairy woodpeckers have resulted from isolation in multiple southern refugia with the current distribution of genetic groups resulting from post‐glacial expansion and subsequent reduction in gene flow. While populations in Alaska, Newfoundland and the Queen Charlotte Islands are genetically distinct from other populations, we found no evidence of these areas acting as refugia throughout the Pleistocene. Atlantic Canada populations contained unique haplotypes raising the possibility of a separate colonization from the rest of eastern Canada. The endemic subspecies on the island of Newfoundland is not genetically distinct from their closest mainland population unlike the Queen Charlotte Island subspecies.  相似文献   

11.
Quaternary glacial cycles have played an important role in shaping the biodiversity in temperate regions. This is well documented in Northern Hemisphere, but much less understood for Southern Hemisphere. We used mitochondrial DNA and nuclear elongation factor 1α intron sequences to examine the Pleistocene glacial impacts on the phylogeographical pattern of the freshwater crab Aegla alacalufi in Chilean Patagonia. Phylogenetic analyses, which separated the glaciated populations on eastern continent into a north group (seven populations) and a south group (one population), revealed a shallow phylogenetic structure in the north group but a deep one in the non-glaciated populations on western islands, indicating the significant influence of glaciation on these populations. Phylogenies also identified the Yaldad population on Chiloé Island as a potentially unrecognized new species. The non-glaciated populations showed higher among population genetic divergence than the glaciated ones, but lower population genetic diversity was not detected in the latter. The two glaciated groups, which diverged from the non-glaciated populations at ~96 800–29 500 years ago and ~104 200–73 800 years ago, respectively, seem to have different glacial refugia. Unexpectedly, the non-glaciated islands did not serve as refugia for them. Demographic expansion was detected in the glaciated north group, with a constant population increase after the last glacial maximum. Nested clade analyses suggest a possible colonization from western islands to eastern continent. After arriving on the continent and surviving the last glacial period there, populations likely have expanded from high to low altitude, following the flood of melting ice. Aegla alacalufi genetic diversity has been primarily affected by Pleistocene glaciation and minimally by drainage isolation.  相似文献   

12.
The colonial urochordate Botryllus schlosseri is a sedentary species of Mediterranean origin that became cosmopolitan, probably because of postglacial-period dispersal and human-mediated invasions of colonies attached to ship hulls. Here we studied microsatellite allele diversity of Atlantic coast populations from an area ranging from European regions south of the last glacial front to regions that had been permanently ice-covered. Gene diversity levels varied dramatically among populations residing in areas subject to different glacial conditions. Five populations from the Iberian Peninsula, in an area south of the last glacial front, as well as two populations from presumed refugia in Brittany, expressed high gene diversity values (expected heterozygosity [He]: 0.76–0.80; average number of alleles per locus [A]: 7.25–8.75). Two populations inhabiting areas that experienced permafrost conditions (Helgoland Island, Germany, and Plymouth, England) had intermediate values (He: 0.40–0.42; A: 3.0–4.0), whereas the Auchenmalg, Scotland, population, from an area previously covered by ice, showed a remarkably low value (He: 0.17; A: 1.75). Therefore, most European populations of B. schlosseri mirrored the movement of the ice front in the last ice age. A second population from the area that was covered by permanent ice (Lossiemouth, Scotland), however, had a high He of 0.61 and an intermediate A of 3.67. Results were compared with recent invasions (populations less than 200 years old) in the United States and New Zealand that had a higher degree of genetic variation than the European native populations established thousands of years ago. Given the overall dearth of studies on this subject, we suggest that in contemporary established Botryllus populations, gene diversity is affected by ecological factors, some of which can be traced directly to the last ice age. Other parameters of gene diversity are influenced by selection pressure, which might be more intense in northern regions.  相似文献   

13.
14.
Hamill RM  Doyle D  Duke EJ 《Heredity》2006,97(5):355-365
Fossil evidence shows that populations of species that currently inhabit arctic and boreal regions were not isolated in refugia during glacial periods, but instead maintained populations across large areas of central Europe. These species commonly display little reduction in genetic diversity in northern areas of their range, in contrast to many temperate species. The mountain hare currently inhabits both temperate and arctic-boreal regions. We used nuclear microsatellite and mtDNA sequence data to examine population structure and alternate phylogeographic hypotheses for the mountain hare, that is, temperate type (lower genetic diversity in northern areas) and arctic-boreal type (high northern genetic diversity). Both data sets revealed concordant patterns. Highest allelic richness, expected heterozygosity and mtDNA haplotype diversity were identified in the most northerly subspecies, indicating that this species more closely maps to phylogeographic patterns observed in arctic-boreal rather than temperate species. With regard to population structure, the Alpine and Fennoscandian subspecies were most genetically similar (F(ST) approximately 0.1). These subspecies also clustered together on the mtDNA tree and were assigned with highest likelihood to a common Bayesian cluster. This is consistent with fossil evidence for intermediate populations in the central European plain, persisting well into the postglacial period. In contrast, the geographically close Scottish and Irish populations occupied separate Bayesian clusters, distinct clades on the mtDNA maximum likelihood tree and were genetically divergent from each other (F(ST) > 0.4) indicating the influence of genetic drift, long isolation (possibly dating from the late glacial era) and/or separate postglacial colonisation routes.  相似文献   

15.
Although a recent study of white spruce using chloroplast DNA uncovered the presence of a glacial refuge in Alaska, chloroplast failed to provide information on the number or specific localities of refugia. Recent studies have demonstrated the utility of nuclear microsatellites to refine insights into postglacial histories. The greater relative rate of mutation may allow finer scale resolution of historic dynamics, including the number, location, and sizes of refugia. Genetic data were acquired from screening 6 microsatellite loci on approximately 14 trees from each of 22 populations located across the central and western boreal forests of Canada and Alaska. Our studies combining microsatellites with Bayesian analyses of population structure in white spruce support the phylogeographic patterns uncovered using chloroplast, separating Alaskan from non-Alaskan regions. Results also support the idea that north-central Alaska served as a glacial refugium during the last glacial maximum. Additionally, the relationship between the degree of genetic differentiation and geographic distance indicated that gene flow played a more important role in structuring non-Alaskan populations, whereas drift played a more important role in structuring Alaskan populations (R(ST)'s for non-Alaskan populations 0.029 ± 0.007 and 0.083 ± 0.012 for Alaskan populations). Microsatellites also substantiate the bidirectional patterns of gene flow previously uncovered using chloroplast DNA but indicate much greater movement and mixing. Results from our Bayesian analyses also suggest the existence of additional cryptic refugia. However, the locations have been obscured by high gene flow (R(ST) averaging 0.057 ± 0.004).  相似文献   

16.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   

17.
We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (F(ST)= 0.129), introns (Φ(ST)= 0.185), and mtDNA control region (Φ(ST)= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger τ estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.  相似文献   

18.
We studied the genetic population structure and phylogeography of the montane caddisfly Drusus discolor across its entire range in central and southern Europe. The species is restricted to mountain regions and exhibits an insular distribution across the major mountain ranges. Mitochondrial sequence data (COI) of 254 individuals from the entire species range is analysed to reveal population genetic structure. The data show little molecular variation within populations and regions, but distinct genetic differentiation between mountain ranges. Most populations are significantly differentiated based on F(ST) and exact tests of population differentiation and most haplotypes are unique to a single mountain range. Phylogenetic analyses reveal deep divergence between geographically isolated lineages. Combined, these results suggest that past fragmentation is the prominent process structuring the populations across Europe. We use tests of selective neutrality and mismatch distributions, to study the demographic population history of regions with haplotype overlap. The high level of genetic differentiation between mountain ranges and estimates of demographic history provide evidence for the existence of multiple glacial refugia, including several in central Europe. The study shows that these aquatic organisms reacted differently to Pleistocene cooling than many terrestrial species. They persisted in numerous refugia over multiple glacial cycles, allowing many local endemic clades to form.  相似文献   

19.
During the Late Pleistocene, glaciers sundered many species into multiple glacial refugia where populations diverged in allopatry. Although deeply divergent mitochondrial DNA (mtDNA) lineages often reflect the number of refugia occupied, it is unlikely that populations that split during the recent Wisconsin glaciations will have reached reciprocal monophyly. We examined mtDNA control region sequences from eastern and western populations of wood ducks (Aix sponsa) to determine whether their current, disjunct distribution is consistent with the occupancy of two glacial refugia. We used the 'isolation with migration' coalescent method (im) to simultaneously estimate effective population sizes, maternal gene flow, and time since divergence. We found 24 unique haplotypes, none of which were shared between the eastern and western populations, but we did not find diagnostic monophyletic lineages suggestive of long-term isolation in multiple glacial refugia. However, a high Phi ST (0.31) indicates that eastern and western populations are well differentiated in mtDNA, and results from im suggest that these populations have been diverging, without extensive gene flow, for 10,000 to 124,000 years. Results from im further suggest that these populations most likely split about 34,000 years ago, and this time of divergence is consistent with the occupancy of multiple glacial refugia during the Late Wisconsin glaciation. Eastern wood ducks are characterized by high genetic diversity, a large effective population size, and a recent population expansion, while western wood ducks have much less genetic diversity, a smaller population size, and have not undergone a recent population expansion.  相似文献   

20.
The monsoon affected mountains of the southern Arabian Peninsula harbour in climatically favoured refugia vegetation elements of palaeo-African origin. To understand better the temporal and spatial differentiation of these refugia, chloroplast variation in Justicia areysiana Deflers (Acanthaceae), a shrub species endemic to the Yemeni and Omani mountains close to the Arabian Sea, was studied using PCR-RFLP and chloroplast microsatellite diversity. Eleven haplotypes were characterized and show a distinct geographical distribution pattern with a deep split between populations from south Yemeni fog oases and those from Hawf Mountains/Dhofar region in east Yemen and south Oman. Very limited haplotype diversity within populations (hS = 0.15) and a high level of population differentiation (GST = 0.81) demonstrate the strong genetic isolation of populations from each other. Past oscillations between humid and arid periods connected with glacial and interglacial episodes in the Pleistocene and Holocene are considered responsible for the observed patterns of genetic variation.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 148 , 437–444.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号