首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increase in the permeability of the glomerular barrier filtration to albumin is a well-known feature of diabetic microvasculature and a negative prognostic factor for vascular complications. However, the underlying mechanisms are incompletely understood. We demonstrated recently that superoxide anion generation increases dimerization of protein kinase G type Iα (PKGIα) subunits, leading to podocyte dysfunction. Here we investigated whether high insulin concentration is involved in PKGI-dependent hyperpermeability of the diabetic glomerular filtration barrier. We assessed changes in insulin-induced glomerular permeability by measuring glomerular capillary permeability to albumin in isolated glomeruli from Wistar and obese and lean Zucker rats and transmembrane albumin flux in cultured rat podocytes. Expression of PKGIα and upstream proteins was confirmed in the podocytes using Western blotting and immunofluorescence. Insulin (300 nM, 5 min) increased NAD(P)H-dependent glomerular albumin permeability in Wistar rats and PKGI-dependent transmembrane albumin flux in cultured podocytes. Podocyte exposure to insulin in non-reducing conditions increased PKGIα interprotein disulfide bond formation, altered the phosphorylation of the PKG target proteins MYPT1 and MLC, and disrupted the actin cytoskeleton. The role of NADPH oxidase (NOX) in insulin-induced reactive oxygen species (ROS) generation and insulin-evoked increases in albumin permeability in podocytes was confirmed with NOX2 and NOX4 siRNA. Glomerular albumin permeability was increased in hyperinsulinemic Zucker obese rats with isolated glomeruli showing increased expression of PKGIα and NOX4. Taken together, these data demonstrate that insulin increases glomerular barrier albumin permeability via a PKGI-dependent mechanism involving NAD(P)H-dependent generation of superoxide anion. These findings reveal a role for insulin in the pathophysiology of diabetic glomerular nephropathy.  相似文献   

2.
Glyceollin has been shown to have antidiabetic properties, although its molecular mechanism is not known. Here, we have investigated the metabolic effects of glyceollin in animal models of insulin resistance and in endoplasmic reticulum (ER) stress-responsive muscle cells. db/db mice were treated with glyceollin for 4 weeks and triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were measured. Glyceollin reduced serum insulin and triglycerides and increased HDL levels in db/db mice. Furthermore, glyceollin caused a significant improvement in glucose homeostasis without altering body weight and food intake in db/db mice. In muscle cells, glyceollin increased the activity of AMP-activated protein kinase (AMPK) as well as cellular glucose uptake. Fatty acid oxidation was also increased. In parallel, phosphorylation of acetyl-CoA carboxylase (ACC) at Ser-79 was increased, consistent with decreased ACC activity. An insulin-resistant state was induced by exposing cells to 5 μg/ml of tunicamycin as indicated by decreased insulin-mediated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and glucose uptake. Inhibition of insulin-mediated tyrosine phosphorylation of IRS-1 and glucose uptake under ER stress was prevented by glyceollin. Strikingly, glyceollin reduced ER stress-induced, c-Jun NH2-terminal kinase activation and subsequently increased insulin signaling via stimulation of AMPK activity in L6 myotubes. Pharmacologic inhibition or knockdown of Ca2+/calmodulin-dependent protein kinase kinase blocked glyceollin-increased AMPK phosphorylation and insulin sensitivity under ER stress conditions. Taken together, these results indicate that glyceollin-mediated enhancement of insulin sensitivity under ER stress conditions is predominantly accomplished by activating AMPK, thereby having beneficial effects on hyperglycemia and insulin resistance.  相似文献   

3.
Hyperglycemia significantly decreases 3′,5′-cyclic guanosine monophosphate (cGMP)-dependent pathway activity in the kidney. A well-characterized downstream signaling effector of cGMP is cGMP-dependent protein kinase G (PKG), exerting a wide range of downstream effects, including vasodilation and vascular smooth muscle cells relaxation. In podocytes that are exposed to high glucose concentrations, crosstalk between the protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) decreased, attenuating insulin responsiveness and impairing podocyte function. The present study examined the effect of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk in podocytes under hyperglycemic conditions. We found that enhancing cGMP-dependent pathway activity using a cGMP analog was associated with increases in SIRT1 protein levels and activity, with a concomitant increase in the degree of AMPK phosphorylation. The beneficial effects of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk also included improvements in podocyte function. Based on our findings, we postulate an important role for SIRT1-AMPK crosstalk in the regulation of albumin permeability in hyperglycemia that is strongly associated with activity of the cGMP-dependent pathway.  相似文献   

4.
Podocytes have foot processes that comprise an important cellular layer of the glomerular barrier involved in regulating glomerular permeability. The disturbance of podocyte function plays a central role in the development of proteinuria in diabetic nephropathy. AMP-activated protein kinase (AMPK), a key regulator of glucose and fatty acid metabolism, plays a major role in obesity and type 2 diabetes. Accumulating evidence suggests that TRPC6 channels are crucial mediators of calcium transport in podocytes, and these channels are involved in disturbing the glomerular filtration barrier in diabetes.Metformin is an anti-diabetic drug widely used for treating patients with type 2 diabetes. Recent studies have suggested that the therapeutic effect of metformin might be mediated by AMPK. The precise function of metformin on cellular function and intracellular signaling in podocytes under diabetic conditions is not fully understood.In this study, we demonstrated that metformin normalized TRPC6 expression via AMPKα1 activation in podocytes exposed to high glucose concentrations. A quantitative analysis showed that metformin increased the colocalization of TRPC6 and AMPKα1 subunits from 42% to 61% in standard glucose (SG) medium and from 29% to 52% in high glucose (HG) medium. AMPK activation was also necessary for maintaining appropriate levels of Rho-family small GTPase activity in HG conditions. Moreover, metformin through AMPK activation remodeled cytoskeleton dynamics, and consequently, reduced filtration barrier permeability in diabetic conditions.  相似文献   

5.
Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser79 and Raptor at Ser792, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α1 and α2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.  相似文献   

6.
The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r =  0.56, p < 0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF–TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM.  相似文献   

7.
High uric acid (HUA) is associated with insulin resistance (IR) in cardiomyocytes. We investigated whether metformin protects against HUA-induced IR in cardiomyocytes. We exposed primary cardiomyocytes to HUA, and cellular glucose uptake was quantified by measuring the uptake of 2-NBDG, a fluorescent glucose analog. Western blot was used to examine the levels of signalling protein. Membrane of glucose transporter type 4 (GLUT4) was analysed by immunofluorescence. We monitored the impact of metformin on HUA-induced IR and in myocardial tissue of an acute hyperuricaemia mouse model established by potassium oxonate treatment. Treatment with metformin protected against HUA-reduced glucose uptake induced by insulin in cardiomyocytes. HUA directly inhibited the phosphorylation of Akt and the translocation of GLUT4 induced by insulin, which was blocked by metformin. Metformin promoted phosphorylation of AMP-activated protein kinase (AMPK) and restored the insulin-stimulated glucose uptake in HUA-induced IR cardiomyocytes. As a result of these effects, in a mouse model of acute hyperuricaemia, metformin improved insulin tolerance and glucose tolerance, accompanied by increased AMPK phosphorylation, Akt phosphorylation and translocation of GLUT4 in myocardial tissues. As expected, AICAR, another AMPK activator, had similar effects to metformin, demonstrating the important role of AMPK activation in protecting against IR induced by HUA in cardiomyocytes. Metformin protects against IR induced by HUA in cardiomyocytes and improves insulin tolerance and glucose tolerance in an acute hyperuricaemic mouse model, along with the activation of AMPK. Consequently, metformin may be an important potential new treatment strategy for hyperuricaemia-related cardiovascular disease.  相似文献   

8.
Gq/11-coupled muscarinic acetylcholine receptors (mAChRs) belonging to M1, M3 and M5 subtypes have been shown to activate the metabolic sensor AMP-activated protein kinase (AMPK) through Ca2 +/calmodulin-dependent protein kinase kinase-β (CaMKKβ)-mediated phosphorylation at Thr172. However, the source of Ca2 + required for this response has not been yet elucidated. Here, we investigated the involvement of store-operated Ca2 + entry (SOCE) in AMPK activation by pharmacologically defined M3 mAChRs in human SH-SY5Y neuroblastoma cells. In Ca2 +-free medium the cholinergic agonist carbachol (CCh) caused a transient increase of phospho-Thr172 AMPK that rapidly ceased within 2 min. Conversely, in the presence of extracellular Ca2 + CCh-induced AMPK phosphorylation lasted for at least 180 min. The SOCE modulator 2-aminoethoxydiphephenyl borate (2-APB), at a concentration (50 μM) that suppressed CCh-induced intracellular Ca2 + ([Ca2 +]i) plateau, inhibited CCh-induced AMPK phosphorylation. CCh triggered the activation of the endoplasmic reticulum Ca2 + sensor stromal interaction molecule (STIM) 1, as indicated by redistribution of STIM1 immunofluorescence into puncta, and promoted the association of STIM1 with the SOCE channel component Orai1. Cell depletion of STIM1 by siRNA treatment reduced both CCh-induced [Ca2 +]i plateau and AMPK activation. M3 mAChRs increased glucose uptake and this response required extracellular Ca2 + and was inhibited by 2-APB, STIM1 knockdown, CaMKKβ and AMPK inhibitors, and adenovirus infection with dominant negative AMPK. Thus, the study provides evidence that SOCE is required for sustained activation of AMPK and stimulation of downstream glucose uptake by M3 mAChRs and suggests that SOCE is a critical process connecting M3 mAChRs to the control of neuronal energy metabolism.  相似文献   

9.
Podocyte resistance to the actions of insulin on glucose transport could contribute to the pathogenesis of diabetic podocytopathy (DP) via disturbances in cyclic-dependent protein kinase signaling. To determine whether cGMP-dependent protein kinase (PKG) is involved in the insulin regulation of glucose transport, we measured insulin-dependent glucose uptake into cultured rat podocytes under conditions of modified PKG activity using pharmacological (PKG activator or inhibitor) and biochemical (siRNA PKGIα, siRNA insulin receptor β) means. Our findings indicate the participation of PKG in insulin-stimulated transport and provide new insights into how PKG may trigger the resistance of glucose transport to insulin in DP.  相似文献   

10.
AMP-activated protein kinase (AMPK) and the NAD(+)-dependent histone/protein deacetylase sirtuin 1 (SIRT1) are metabolic sensors that can increase each other's activity. They are also both activated by the antidiabetic drug metformin and downregulated in the liver under conditions of nutrient excess (e.g., hyperglycemia, high-fat diet, obesity). In these situations, the abundance of the tumor suppressor p53 is increased; however, the relevance of this to the changes in AMPK and SIRT1 is not known. In the present study we investigated this question in HepG2 cells under high glucose conditions. Metformin induced activation of AMPK and SIRT1 and decreased p53 protein abundance. It also decreased triglyceride accumulation and cytosolic oxidative stress (a trigger for p53 accumulation) and increased the deacetylation of p53 at a SIRT1-targeted site. The decrease in p53 abundance caused by metformin was abolished by inhibition of murine double minute 2 (MDM2), a ubiquitin ligase that mediates p53 degradation, as well as by overexpression of a dominant-negative AMPK or a shRNA-mediated knockdown of SIRT1. In addition, overexpression of p53 decreased SIRT1 gene expression and protein abundance, as well as AMPK activity in metformin-treated cells. It also diminished the triglyceride-lowering action of metformin, an effect that was rescued by incubation with the SIRT1 activator SRT2183. Collectively, these findings suggest the existence of a novel reciprocal interaction between AMPK/SIRT1 and p53 that may have implications for the pathogenesis and treatment of metabolic diseases.  相似文献   

11.
12.
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.  相似文献   

13.
14.
《Cellular signalling》2014,26(9):1800-1806
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cytoplasmic protein that plays a critical role in the maintenance of energy homeostasis. However, its role in the nucleus is still largely unknown. Here, we showed that AMPKα2 translocated into the nucleus during muscle differentiation. We also showed that upon treatment with 5-aminoimidazole-4-carboxy-amide-1-d-ribofuranoside (AICAR), an AMPK activator, AMPK rapidly translocated into the nucleus in rat myoblast L6 cells. On the other hand, the AMPKα2 phosphorylation-defective mutant did not translocate into the nucleus. Knockdown of AMPKα2 suppressed the differentiation-induced expression of myogenin, a differentiation marker. A physiological AMPK activator, metformin, also induced the translocation of AMPKα2 into the nucleus. Both inhibition and knockdown of AMPKα2 suppressed metformin-mediated glucose uptake. In addition, AMPKα2 was shown to directly interact with the heterogeneous nuclear ribonucleoprotein H (hnRNP H). AICAR treatment increased the phosphorylation of hnRNP H. Metformin increased the interaction between AMPKα2 and hnRNP H in the nucleus. Knockdown of hnRNP H blocked metformin-induced glucose uptake. In summary, these results demonstrate that AMPKα2 translocates into the nucleus via phosphorylation, AMPKα2 interacts with and phosphorylates hnRNP H in the nucleus, and such a protein–protein interaction modulates metformin-mediated glucose uptake.  相似文献   

15.
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.  相似文献   

16.
As a follow-up discovery of AMPK activators from natural products, 20S-dammar-24-en-2α,3β,12β,20-tetrol (GP, 1), a dammarane-type triterpenoid, was found to have some favorable metabolic effects on dyslipidemia in Golden Syrian hamsters, and activate AMPKα2β1γ1 by around 2.4 fold with an EC50 of 5.1 μM on molecular level. In order to enhance its potency at AMPK and structure–activity relationship study, GP derivatives were designed, synthesized, and evaluated in pharmacological AMPK activation assays. Structure–activity relationship analysis showed that amine at the 24-position (groups I–IV) effectively and significantly increased the potency and efficacy. GP derivatives 12 and 1719 exhibited better potency (EC50: 0.3, 0.8, 0.8, and 1.0 μM) and efficacy (fold: 3.2, 2.7, 3.0, and 2.8) in the activation of AMPK heterotrimer α2β1γ1 than positive control (AMP, EC50: 1.6 μM, fold: 3.2). Furthermore, the most potent compounds 12 and 17 obviously inhibited glucose output through increasing the phosphorylation of AMPK, without affecting mitochondrial membrane potential or producing cytotoxicity.  相似文献   

17.
The current study presents that ascofuranone isolated from a phytopathogenic fungus, Ascochyta viciae, has antitumor activity against various transplantable tumors and a considerable hypolipidemic activity. AMP-activated protein kinase (AMPK) plays a critical role in cellular glucose and lipid homeostasis. We found that ascofuranone improves ER stress-induced insulin resistance by activating AMPK through the LKB1 pathway. In L6 myotube cells, ascofuranone treatment increased the phosphorylation of the Thr-172 residue of the AMPKα subunit and the Ser-79 subunit of acetyl-CoA carboxylase (ACC) and cellular glucose uptake. Ascofuranone-induced phosphorylation of AMPK and ACC was not increased in A549 cells lacking LKB1. Interestingly, ascofuranone treatment also improved insulin signaling impaired by ER stress in L6 myotube cells. These effects were all reversed by pretreatment with Compound C, an AMPK inhibitor or with adenoviral-mediated dominant-negative AMPKα2. Taken together, these results indicated that ascofuranone-mediated enhancement of glucose uptake and reduction of impaired insulin sensitivity in L6 cells is predominantly accomplished by activating AMPK, thereby mediating beneficial effects in type 2 diabetes and insulin resistance.  相似文献   

18.
Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.  相似文献   

19.
The preconditioning response conferred by a mild uncoupling of the mitochondrial membrane potential (Δψm) has been attributed to altered reactive oxygen species (ROS) production and mitochondrial Ca2 + uptake within the cells. Here we have explored if altered cellular energetics in response to a mild mitochondrial uncoupling stimulus may also contribute to the protection. The addition of 100 nM FCCP for 30 min to cerebellar granule neurons (CGNs) induced a transient depolarization of the Δψm, that was sufficient to significantly reduce CGN vulnerability to the excitotoxic stimulus, glutamate. On investigation, the mild mitochondrial ‘uncoupling’ stimulus resulted in a significant increase in the plasma membrane levels of the glucose transporter isoform 3, with a hyperpolarisation of Δψm and increased cellular ATP levels also evident following the washout of FCCP. Furthermore, the phosphorylation state of AMP-activated protein kinase (AMPK) (Thr 172) was increased within 5 min of the uncoupling stimulus and elevated up to 1 h after washout. Significantly, the physiological changes and protection evident after the mild uncoupling stimulus were lost in CGNs when AMPK activity was inhibited. This study identifies an additional mechanism through which protection is mediated upon mild mitochondrial uncoupling: it implicates increased AMPK signalling and an adaptive shift in energy metabolism as mediators of the preconditioning response associated with FCCP-induced mild mitochondrial uncoupling.  相似文献   

20.
Naringenin, a flavonoid found in high concentrations in grapefruit, has been reported to have antioxidant, antiatherogenic, and anticancer effects. Effects on lipid and glucose metabolism have also been reported. Naringenin is structurally similar to the polyphenol resveratrol, that has been reported to activate the SIRT1 protein deacetylase and to have antidiabetic properties. In the present study we examined the direct effects of naringenin on skeletal muscle glucose uptake and investigated the mechanism involved. Naringenin stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 75 μM naringenin for 2 h (192.8 ± 24%, < 0.01), a response comparable to maximum insulin response (190.1 ± 13%, < 0.001). Similar to insulin, naringenin did not increase glucose uptake in myoblasts indicating that GLUT4 glucose transporters may be involved in the naringenin-stimulated glucose uptake. In addition, naringenin did not have a significant effect on basal or insulin-stimulated Akt phosphorylation while significantly increased AMPK phosphorylation/activation. Furthermore, silencing of AMPK, using siRNA approach, abolished the naringenin-stimulated glucose uptake. The SIRT1 inhibitors nicotinamide and EX527 did not have an effect on naringenin-stimulated AMPK phosphorylation and glucose uptake. Our data show that naringenin increases glucose uptake by skeletal muscle cells in an AMPK-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号