首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribonuclease A aggregates (dimers, trimers, tetramers, pentamers) can be obtained by lyophilization from 40% acetic acid solutions. Each aggregate forms two conformational isomers distinguishable by different basic net charge. The crystal structure of the two dimers has recently been determined; the structure of the higher oligomers is unknown. The results of the study of the two trimeric and tetrameric conformers can be summarized as follows: (1) RNase A trimers and tetramers form by a 3D domain-swapping mechanism. N-terminal and C-terminal types of domain swapping could coexist; (2) the secondary structures of the trimeric and tetrameric conformers do not show significant differences if compared with the secondary structure of monomeric RNase A or its two dimers; (3) a different exposure of tyrosine residues indicates that in the aggregates they have different microenvironments; (4) the two trimeric and tetrameric conformers show different susceptibility to digestion by subtilisin; (5) dimers, trimers, and tetramers of RNase A show unwinding activity on double-helical poly(dA-dT) x poly(dA-dT), that increases as a function of the size of the oligomers; (6) the less basic conformers are more stable than the more basic ones, and a low concentration in solution of trimers and tetramers favors their stability, which is definitely increased by the interaction of the aggregates with poly(dA-dT) x poly(dA-dT); (7) the products of thermal dissociation of the two trimers indicate that their structures could be remarkably different. The dissociation products of the two tetramers allow the proposal of two models for their putative structures.  相似文献   

2.
By lyophilization from 40% acetic acid solutions, bovine ribonuclease A forms well characterized, three-dimensional domain-swapped oligomers: dimers, trimers, tetramers, and higher order multimers. Each oligomeric species consists of at least two conformers. Identical oligomers also form by thermally-inducing the oligomerization of highly concentrated RNase A dissolved in fluids endowed with various denaturing power. Now, our question is: which might the influence of a reducing agent be on RNase A oligomerization, i.e., of conditions that decrease the stability of the protein and increase the mobility of its swapping domains? To address this question, we carried out experiments of RNase A oligomerization in the presence of increasing concentrations of dithiothreitol (DTT) under the two experimental conditions mentioned above. Results indicate that RNase A oligomers similar to those previously known form anyhow, but with a change of their relative proportions. The amounts of dimers and trimers decrease by increasing the concentration of DTT, while the yields of two tetramers remarkably increase. Moreover, in the presence of DTT RNase A forms labile and probably unstructured aggregates that can possibly drive the protein towards precipitation when the reducing agent's concentration increases. Taken together, these results point out once again (i) the important role of the 3D domain swapping mechanism in protein oligomerization, and (ii) the importance of the native structure of RNase A (and of proteins in general) in preventing an uncontrolled aggregation and precipitation in a reducing and highly crowded environment like that existing in a living cell.  相似文献   

3.
Protein aggregation via 3D domain swapping is a complex mechanism which can lead to the acquisition of new biological, benign or also malignant functions, such as amyloid deposits. In this context, RNase A represents a fascinating model system, since by dislocating different polypeptide chain regions, it forms many diverse oligomers. No other protein displays such a large number of different quaternary structures. Here we report a comparative structural analysis between natural and artificial RNase A dimers and bovine seminal ribonuclease, a natively dimeric RNase with antitumor activity, with the aim to design RNase A derivatives with improved pharmacological potential.  相似文献   

4.
Cozza G  Moro S  Gotte G 《Biopolymers》2008,89(1):26-39
By lyophilization from 40% acetic acid solutions, bovine pancreatic ribonuclease A forms several three-dimensional (3D) domain-swapped oligomers: dimers, trimers, tetramers, pentamers, hexamers, and traces of high-order oligomers, purifiable by cation-exchange chromatography. Each oligomeric species consists of at least two conformers displaying different basicity density, and/or exposure of positive charges. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for a second RNase A trimer and four tetramers, but not all the models are certainly assignable to the tetramers purified. Further studies have also been made on the pentameric and hexameric species, again without reaching structurally clear-cut results. This work is focused on the detailed modeling of the tetrameric RNase A species, using four different approaches to possibly clarify unknown structural aspects. The results obtained do not confirm the validity of one tetrameric model previously proposed, but allow the proposal of a novel tetrameric structure displaying new interfaces that are absent in the other known conformers. New details concerning other tetrameric structures are also described. RNase A multimers larger than tetramers, i.e., pentamers, hexamers, octamers, nonamers, up to dodecamers, are also modeled, with the proposal of novel domain-swapped structures, and the confirmation of what had previously been inferred. Finally, the propensity of RNase A to possibly form high-order supramolecular multimers is analyzed starting from the large number of domain-swapped RNase A conformers modeled.  相似文献   

5.
By lyophilization from 40% acetic acid solutions, bovine pancreatic Ribonuclease A forms three-dimensional domain-swapped dimers, trimers, and tetramers that can be separated by cation-exchange chromatography. Each oligomeric species consists of at least two conformers, one less basic, one more basic. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for a second RNase A trimer and four tetramers. This work is focused on the characterization of the largest oligomers which compose small peaks that have always appeared in chromatograms of RNase A. These higher order oligomers were collected by repeated cation-exchange chromatographies. On the basis of (a) gel filtrations through analytical Superdex 75 and 200; (b) gel electrophoreses under non-denaturing conditions, (c) cross-linking with divynilsulfone followed by analyses with SDS-PAGE and mass spectrometry, (d) enzymatic activity assays, and (e) analyses of the products of spontaneous dissociation of the oligomers, we could identify three-dimensional domain-swapped pentamers and hexamers, and one additional tetrameric conformer. For the latter we propose a cyclic model (C(TT)). Moreover, we advance a linear model (NCNC(P)) for one pentamer, and three possible cyclic models (with a C-trimer as the main component) for one hexamer. The experimental evidence also indicates the existence of heptameric, octameric and nonameric species.  相似文献   

6.
Chemical modifications of bull seminal ribonuclease (AS RNase) cause considerable changes in its cytotoxic activity. However, binding of AS RNase on cells has been changed little or not at all. Every modification (oxidation, reduction, carbomethylation, succinylation and maleylation) inhibited ribonuclease and aspermatogenic and embryotoxic activity of AS RNase. The common cytotoxic effect was also changed to some degree. Inhibition of incorporation of 3H-thymidine to BP-8 tumor cells in culture was observed after application of native, oxidized, reduced, and carboxymethylated AS RNase.  相似文献   

7.
Onconase (ONC) and bovine seminal ribonuclease (BS-RNase) are homologs of bovine pancreatic ribonuclease (RNase A). Unlike RNase A, ONC and BS-RNase can evade the cytosolic ribonuclease inhibitor protein and are potent cytotoxins. Here, the endogenous cytotoxic activities of ONC and BS-RNase are compared in a wide variety of assays. Injections of ONC into one or both testes of mice and rats evokes a stronger aspermatogenic activity than does the injection of BS-RNase. Epididymides exposed to ONC lose mass and all sperm. Testicular tissue is gradually colonized by immunite and fibrocytic cells. Yet, Leydig cells are always present and functional in the ligamented parts of testicles injected with ONC or BS-RNase. ONC is likewise more toxic to mouse embryos than is BS-RNase, both in vitro and in vivo. The antiproliferative effect of ONC on human tumor cell line ML-2 and lymphocytes in a mixed lymphocyte culture is also more pronounced than is that of BS-RNase. The number of granulocyte-macrophage colony-forming units is repressed almost completely by ONC, whereas a five-fold higher dose of BS-RNase does not cause substantial inhibition. In mice, ONC is less immunogenic than BS-RNase but more immunogenic than RNase A. Together, these data indicate that ONC is a pluripotent cytotoxin, and serves as the benchmark with which to gauge the cytotoxicity of other ribonucleases.  相似文献   

8.
Ribonuclease A (RNase A) dimers have been recently found to be endowed with some of the special, i.e., non-catalytic biological activities of RNases, such as antitumor and aspermatogenic activities. These activities have been so far attributed to RNases which can escape the neutralizing action of the cytosolic RNase inhibitor (cRI). However, when the interactions of the two cytotoxic RNase A dimers with cRI were investigated in a quantitative fashion and at the molecular level, the dimers were found to bind cRI with high affinity and to form tight complexes.  相似文献   

9.
By lyophilization from 40% acetic acid solutions, bovine ribonuclease A forms several types of three-dimensional domain-swapped oligomers: dimers, trimers, tetramers, and higher order multimers. Each oligomeric species comprehends at least two conformers: one less basic and one more basic. The structures of the two dimers and one trimer have been solved. Plausible models have been proposed for the other oligomers. Among them, all chromatographic patterns show the constant presence of minority species, and we focused our attention on two of them. The first oligomer (named X) elutes between the two trimeric conformers; the second (named Y) elutes as a shoulder in the ascending limb of the more basic trimer. After purification with cation-exchange chromatography, on the basis of (a) gel filtration analyses, (b) gel electrophoreses under nondenaturing conditions, (c) SDS-PAGE, (d) cross-linking experiments with divinylsulfone and 1,5-difluoro 2,4-dinitrobenzene, (e) enzymatic activity assays, (f) identification of the products of their spontaneous dissociation, and (g) controlled proteolysis with subtilisin, we propose that the X and Y oligomeric species contain two novel three-dimensional domain-swapped tetrameric conformers of RNase A, differing from each other as well as from the two tetramers already identified. For the two novel tetramers we showed tentative structural models. X(TT) could be a circular NCNC-tetramer; Y(TT) could be a propeller-like C-trimer with an attached N-swapping monomer (NCCC(TT)), identical to a model proposed by Liu and Eisenberg (Liu, Y., and Eisenberg, D. (2002) Protein Sci. 11, 1285-1299).  相似文献   

10.
Unlike the bovine pancreatic ribonuclease (RNAase A), bovine seminal ribonuclease (BS RNAase) displays various biological activities including antitumor cytotoxicity. To learn more about its antitumor activity, we investigated BS RNAase effect on athymic nude mice bearing various tumors. BS RNAase (250 μg per mouse per day) was administered to the mice with prostate carcinoma for three weeks by three different routes (intraperitoneally—i.p., subcutaneously—s.c., and intratumorally—i.t.). Administration i.p. was ineffective, while s.c. administration reduced significantly size of tumors and i.t. administration abolished half of the tumors in treated mice. The i.t. administration of BS RNase to nude mice bearing melanoma showed even better results. Eighty % of mice were without tumors and in the other mice the tumors were significantly diminished. The best antitumor effect was obtained in case of seminoma. All mice bearing this tumor were cured after ten doses of BS RNAase.  相似文献   

11.
Lyophilization of bovine ribonuclease A (RNase A; Sigma, type XII-A) from 40% acetic acid solutions leads to the formation of approximately 14 aggregated species that can be separated by ion-exchange chromatography. Several aggregates were identified, including two variously deamidated dimeric subspecies, two distinct trimeric and two distinct tetrameric RNase A conformers, besides the two forms of dimer characterized previously [Gotte, G. & Libonati, M. (1998) Two different forms of aggregated dimers of ribonuclease A. Biochim. Biophys. Acta 1386, 106-112]. We also have possible evidence for the existence of two forms of pentameric RNase A. The two forms of trimers and tetramers are characterized by: (a) slightly different gel filtration patterns; (b) different retention times in ion-exchange chromatography; and (c) different mobilities in cathodic gel electrophoresis under nondenaturing conditions. Therefore, they appear to have distinct structural organizations responsible for a different availability of their positively charged amino acid residues. All RNase A oligomers, in particular the two distinct trimeric and tetrameric conformers, degrade poly(A).poly(U), viral double-stranded RNA and polyadenylate with a catalytic efficiency that is in general higher for the more basic species. On the contrary, the activity of the RNase A oligomers, from dimer to pentamer, on yeast RNA and poly(C) (Kunitz assay) is lower than that of monomeric RNase A.  相似文献   

12.
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of ‘humanized antitumor ribonuclease’ that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.  相似文献   

13.
Dimers, trimers and tetramers of 15-dehydro-PGB1 and of 16,16'-dimethyl-15-dehydro-PGB1 have been synthesized and their effect on mitochondrial function evaluated. The trimers and tetramers, and to a lesser extent the dimers, of both series, protected isolated mitochondria from the loss of phosphorylating capacity during in vitro incubation. The monomers were inactive. The trimers and tetramers inhibited between 40 and 50% the F1F0-ATPase of submitochondrial particles. All of the oligomers, but not the monomers, had Ca2+ ionophoretic activity with isolated mitochondria. These activities are qualitatively similar to that reported for the oligomeric mixture of 15-dehydro-PGB1, termed PGBX.  相似文献   

14.
Self-assembling complexes have potential as novel supramolecular biomaterials but domain swapped complexes have yet to investigated in this capacity. Bovine ribonuclease A (RNase A) is a useful model protein as it is able to form a range of three dimensional domain swapped structures, including dimers, trimers and tetramers that have similar catalytic ability. However, little work has been carried out investigating the physical characteristics of these complexes. In an effort to characterise the strength of these oligomeric interactions, analytical ultracentrifugation was carried out to measure the dissociation of higher order complexes, using fluorescent tags to test for dissociation at very low concentrations. Results of this work suggest that the oligomers form a very tight complex, with no evidence of dissociation down to 250 pM. RNase A oligomers also had similar thermal stability to that of monomeric enzyme, suggesting that the main limiting factor in RNase A stability is the tertiary, rather than quaternary structure. Following thermal unfolding of RNase A, the protein refolded upon cooling, but returned to the monomeric state. This latter result may limit the potential of domain swapping as a means of material assembly.  相似文献   

15.
Evidence suggests that amyloid β-protein (Aβ) oligomers may be seminal pathogenic agents in Alzheimer's disease (AD). If so, developing oligomer-targeted therapeutics requires an understanding of oligomer structure. This has been difficult due to the instability of these non-covalently associated Aβ assemblies. We previously used rapid, zero-length, in situ chemical cross-linking to stabilize oligomers of Aβ40. These enabled us to isolate pure, stable populations of dimers, trimers, and tetramers and to determine their structure-activity relationships. However, equivalent methods applied to Aβ42 did not produce stable oligomers. We report here that the use of an Aβ42 homologue, [F10, Y42]Aβ42, coupled with sequential denaturation/dissociation and gel electrophoresis procedures, provides the means to produce highly pure, stable populations of oligomers of sizes ranging from dimer through dodecamer that are suitable for structure-activity relationship determination.  相似文献   

16.

Background

Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation) and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus.

Results

Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t) induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50) in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state), lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation.

Conclusions

Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.  相似文献   

17.
The structure of the human properdin molecule was investigated by hydrodynamic, spectroscopic, and transmission electron microscope studies. Sucrose density gradient ultracentrifugation of purified, functionally active properdin showed a single component sedimenting at 5.5 S. Electron microscopic examination by two different methods, however, revealed polydispersity of the protein which consisted of cyclic dimers, trimers, tetramers, pentamers, and higher cyclic oligomers. Approximately 80% of the oligomers were dimers, trimers, and tetramers. Monomers could not be detected. These polymers could be partially separated by gel filtration on Sephacryl S-300 and all fractions were active in terms of binding to C3b. The specific activity increased with oligomer size. When reexamined after incubation at 37 degrees C for 4 h or at 4 degrees C for 2 weeks, the chromatographic behavior of the oligomers and their electron microscopic appearance were unchanged, suggesting that in vitro no rapid equilibration occurred. The protomer is clearly visualized within polymers as a flexible, rod-like structure 26.0 nm in length and 2.5 nm in diameter, with pronounced thickening at each end. The monomer is bivalent with respect to binding to other properdin monomers and the binding sites are localized to the ends of the structure. A model could be devised which is consistent with the distinct geometry of the intersubunit contacts observed in micrographs. The circular dichroism spectrum of properdin suggests the presence of little alpha helix or beta structure and shows positive ellipticity at 231 nm. In contrast to previous investigators, we conclude that isolated human properdin is polydisperse and consists of a set of cyclic polymers constructed from a single highly asymmetric and flexible protomer.  相似文献   

18.
The binding of pure dimers, trimers and tetramers of randomly cross-linked non-immune rabbit immunoglobulin G to the first component and subcomponent of the complement system, C1 and C1q respectively, was studied. These oligomers possessed open linear structures. All three oligomers fixed complement with decreasing affinity in the order: tetramer, trimer, dimer. Complement fixation by dimeric immunoglobulin exhibited the strongest concentration-dependence. No clear distinction between a non-co-operative and a co-operative binding mechanism could be achieved, although the steepness of the complement-fixation curves for dimers and trimers was better reflected by the co-operative mechanism. Intrinsic binding constants were about 10(6)M-1 for dimers, 10(7)M-1 for trimers and 3 X 10(9)M-1 for tetramers, assuming non-co-operative binding. The data are consistent with a maximum valency of complement component C1 for immunoglobulin G protomers in the range 6-18. The binding of dimers to purified complement subcomponent C1q was demonstrated by sedimentation-velocity ultracentrifugation. Mild reduction of the complexes by dithioerythritol caused the immunoglobulin to revert to the monomeric state (S20,w = 6.2-6.5S) with concomitant loss of complement-fixing ability.  相似文献   

19.
Staphylococcus aureus H was grown for 4 generation times with various sub-growth-inhibitory concentrations of beta-lactam antibiotics specific for particular penicillin-binding proteins (PBPs) - PBP2, clavulanic acid; PBP3, methicillin; PBP4, cefoxitin - and also with the non-specific benzylpenicillin. Isolated cell walls were digested with Chalaropsis muramidase and the resulting peptidoglycan fragments were fractionated by HPLC into disaccharide-peptide monomers and cross-linked dimers, trimers, tetramers and greater oligomers. The pattern of relative fragment concentrations with increasing amounts of drug was roughly the same regardless of the antibiotic used, monomers and dimers increasing while trimers and tetramers changed little and oligomers decreased rapidly. The patterns resembled closely those predicted by the 'random addition' model for multiple cross-link formation and not at all those predicted by the 'monomer addition' model. The O-acetylation of the peptidoglycan remained essentially unaffected under all these conditions. S. aureus MR-1, a constitutive producer of PBP2', gave similar results when treated with methicillin.  相似文献   

20.
The early stages of heat induced aggregation at 67.5 degrees C of beta-lactoglobulin were studied by combined static light scattering and size exclusion chromatography. At all conditions studied (pH 8.7 without salt and pH 6.7 with or without 60 mM NaCl) we observe metastable heat-modified dimers, trimers, and tetramers. These oligomers reach a maximum in concentration at about the time when large aggregates (1000-4000 kg/mol) appear, after which they decline in concentration. By isolating the oligomers it was demonstrated that they rapidly form aggregates upon heating in the absence of monomeric protein, showing that these species are central to the aggregation process. To our knowledge this is the first time that intermediates in protein aggregation have been isolated. At all stages of aggregation the dominant oligomer was the heat-modified dimer. Whereas the heat-modified oligomers are formed at a higher rate at pH 8.7 than at pH 6.7, the opposite is the case for the formation of aggregates from the metastable oligomers indicating cross-linking via disulfide bridges for the oligomers and noncovalent interaction in the formation of the aggregates. The data suggest that an aggregate nucleus is formed from four oligomers. For protein concentrations of 10 or 20 g/l a heat-modified monomer can be observed until about the time when the maximum in concentration appears of the heat-modified dimer. The disappearance of this heat-modified monomer correlates to the formation of dimers (trimers and tetramers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号