首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic plasma concentrations of arginine vasopressin (AVP) were studied in three groups of 10-15 day-old conscious newborn calves. Animals in the first group (control group) and in the second group (systemic-hypertonic-injected group) received respectively isotonic and hypertonic (8 mmol NaCl/kg body weight) saline injection into the right jugular vein. Animals in the third group were fitted with chronic mesenteric and hepatic-portal catheters and received a 1 h-hypertonic saline infusion (2 mmol NaCl/kg body weight) into the main mesenteric vein. In animals in the second group there were parallel increases in systemic plasma concentration of Na+ (from 148.0 +/- 2.6 to 177 +/- 8 mmol/l; P less than 0.01), osmolality (from 289 +/- 2 to 319 +/- 4 mOsmol/kg H2O; P less than 0.01) and systemic plasma concentrations of AVP (from 4.2 +/- 0.4 to 11.1 +/- 0.6 pmol/l; P less than 0.01) 10 min after the injection. There were no significant changes in control animals. Hypertonic saline infusion into the main mesenteric vein in the third group induced an increase in concentration of Na+ (from 147.3 +/- 2.0 to 165.0 +/- 5.0 mmol/l; P less than 0.01) and osmolality (from 288 +/- 5 to 315 +/- 10 mOsmol/kg H2O; P less than 0.01) in hepatic-portal vein plasma but did not alter systemic plasma osmolality or concentrations of Na+ and AVP. This study demonstrates that the relationship between plasma concentrations of AVP and systemic osmolality is operative in the newborn calf but does not support the hypothesis that hepatic portal osmo-receptors sensitive to hyperosmolality influence AVP release.  相似文献   

2.
Polyacrylamide gel electrophoresis of plasma and concentrated cerebrospinal fluid (CSF) preincubated with tritium labelled 5 alpha-dihydrotestosterone (DHT) showed identical migration of the radioactivity, indicating the presence of sex-hormone-binding globulin (SHBG) in human CSF. The concentrations of SHBG (measured as the binding capacity) and albumin were measured in concentrated CSF (12 women and 1 man) and samples of plasma of some patients (9 women). SHBG could not be detected in 6 of the CSF samples, and the mean value of the determinable samples was 42.3 +/- 13.4 pmol/l. The mean +/- SE of the SHBG concentration in plasma was 90.8 +/- 8.9 nmol/l and the mean albumin concentrations in CSF and plasma were 3.4 +/- 0.6 mumol/l and 670 +/- 107 mumol/l respectively. The distribution ratio for SHBG over the blood-CSF barrier was 10 times higher than for albumin. It was concluded that the SHBG-binding in the CSF is negligible but that the albumin-binding may contribute to the CSF concentrations of testosterone and estradiol, which are 10-25% above the plasma unbound concentrations.  相似文献   

3.
In the present study, we have examined in Wistar rats the effects of food or water deprivation of 3 days on the hypophyso-adrenal axis, vasopressinergic system and activity of A1 noradrenergic brain stem cell group, which is involved in the control of the hypothalamic neuro-endocrine activity. Levels of adrenocorticotropic hormone (ACTH) and vasopressin (AVP) were determined by radio-immunoassay, and corticosterone level was determined by fluorimetric method. Plasma levels of ACTH and corticosterone were greatly increased in both groups of rats. In water-deprived rats, plasma AVP (13.83 +/- 1.63 vs. 3.03 +/- 0.23 pg/ml) and osmolality levels were significantly elevated with a marked decrease of AVP hypophysis content (272 +/- 65 vs. 1098 +/- 75 ng/mg protein), but not in food-deprived rats in which osmolality did not change and AVP remained stocked (2082 +/- 216 ng/mg protein) in the hypophysis without release in the plasma (1.11 +/- 0.23 pg/ml). These observations indicated that both food-deprivation and water-deprivation stimulated the pituitary adrenal axis thereby suggesting a stress state. AVP production is stimulated both by fluid and food restriction but is secreted with differential effects: during food restriction AVP secretion is limited to supporting the hypothalamic pituitary-adrenal system.  相似文献   

4.
Neurohumoral responses have been implicated in the pathogenesis of ischemia-evoked cerebral edema. In a well-characterized animal model of ischemic stroke, the present study was undertaken to 1) study the profile of plasma arginine-vasopressin (AVP), and 2) determine whether osmotherapy with mannitol and various concentrations of hypertonic saline (HS) solutions influence plasma AVP levels. Halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion with the intraluminal filament technique. Plasma AVP levels (means +/- SD) were significantly elevated at 24 h (42 +/- 21 pg/ml), 48 h (50 +/- 28 pg/ml), and 72 h (110 +/- 47 pg/ml), and returned to baseline at 96 h (22 +/- 15 pg/ml) following middle cerebral artery occlusion compared with sham-operated controls (14 +/- 7 pg/ml). Plasma AVP levels at 72 h were significantly attenuated with 7.5% HS (37 +/- 8 pg/ml; 360 +/- 11 osmol/l) compared with 0.9% saline (73 +/- 6; 292 +/- 6 osmol/l), 3% HS (66 +/- 8 pg/ml; 303 +/- 12 osmol/l), or mannitol (74 +/- 9 pg/ml; 313 +/- 14 osmol/l) treatment. HS (7.5%) significantly attenuated water content in the ipsilateral and contralateral hemispheres compared with surgical shams, 0.9% saline, 3% HS, and mannitol treatments. Peak plasma AVP levels were not associated with direct histopathological injury to the anterior hypothalamus. Attenuation of brain water content with 7.5% HS treatment coincides with attenuated serum AVP levels, and we speculate that this may represent one additional mechanism by which osmotherapy attenuates edema associated with ischemic stroke.  相似文献   

5.
Conscious rats were given i. p. polyethylene glycol (PEG) or dextran injections to compare their efficacy in inducing moderate hypovolaemia. Dextran was found unsuitable, producing large variability in the plasma vasopressin (AVP) concentrations. Putative neurotransmitters involved in the AVP response to hypovolaemia and in basal release were examined using opioid, and beta-adrenoceptor and dopamine receptor-blocking agents. A dose of PEG was chosen to produce a decrease in blood volume of approx 14.5% giving plasma AVP concentrations of 19.0 +/- 4.6 pmol/l. Naloxone and phenoxybenzamine failed to influence AVP release under both hypovolaemic and basal conditions. Prazosin also failed to influence the AVP response. In contrast propranolol elevated the plasma AVP concentrations in both conditions. Haloperidol enhanced basal AVP release but did not influence release during hypovolaemia. Guanethidine pretreatment partially blocked the response to hypovolaemia, but did not affect basal plasma AVP. Thus it appears that aminergic pathways have an inhibitory influence on AVP release under hypovolaemic and basal conditions. However, endogenous opioids do not appear to contribute significantly to the hypovolaemic response.  相似文献   

6.
To determine sex differences in osmoregulation of arginine vasopressin (AVP) and body water, we studied eight men (24 +/- 1 yr) and eight women (29 +/- 2 yr) during 3% NaCl infusion [hypertonic saline infusion (HSI); 120 min, 0.1 ml. kg body wt(-1). min(-1)]. Subjects then drank 15 ml/kg body wt over 30 min followed by 60 min of rest. Women were studied in the early follicular (F; 16.1 +/- 2.8 pg/ml plasma 17beta-estradiol and 0.6 +/- 0.1 ng/ml plasma progesterone) and midluteal (L; 80.6 +/- 11.4 pg/ml plasma 17beta-estradiol and 12.7 +/- 0.7 ng/ml plasma progesterone) menstrual phases. Basal plasma osmolality was higher in F (286 +/- 1 mosmol/kgH(2)O) and in men (289 +/- 1 mosmol/kgH(2)O) compared with L (280 +/- 1 mosmol/kgH(2)O, P < 0.05). Neither menstrual phase nor gender affected basal plasma AVP concentration (P([AVP]); 1.7 +/- 4, 1.9 +/- 0.4, and 2.2 +/- 0.5 pg/ml for F, L, and men, respectively). The plasma osmolality threshold for AVP release was lowest in L (x-intercept, 263 +/- 3 mosmol/kgH(2)O, P < 0.05) compared with F (273 +/- 2 mosmol/kgH(2)O) and men (270 +/- 4 mosmol/kgH(2)O) during HSI. Men had greater P([AVP])-plasma osmolality slopes (i.e., sensitivity) compared with F and L (slopes = 0.14 +/- 0.04, 0.09 +/- 0.01, and 0.24 +/- 0.07 for F, L, and men, respectively, P < 0.05). Despite similar Na+-regulating hormone responses, men excreted less Na+ during HSI (0.7 +/- 0.1, 0.7 +/- 0.1, and 0.5 +/- 0.1 meq/kg body wt for F, L, and men, respectively, P < 0.05). Furthermore, men had greater systolic blood pressure (119 +/- 5, 119 +/- 5, and 132 +/- 3 mmHg for F, L, and men, respectively, P < 0.05) than F and L. Our data indicate greater sensitivity in P([AVP]) response to changes in plasma osmolality as the primary difference between men and women during HSI. In men, this greater sensitivity was associated with an increase in systolic blood pressure and pulse pressure during HSI, most likely due to a shift in the pressure-natriuresis curve.  相似文献   

7.
Maternal dehydration consistent with mild water deprivation or moderate exercise results in maternal and fetal plasma hyperosmolality and increased plasma arginine vasopressin (AVP). Previous studies have demonstrated a reduction in fetal urine and lung fluid production in response to maternal dehydration or exogenous fetal AVP. As fetal urine and perhaps lung liquid combine to produce amniotic fluid, maternal dehydration may affect the amniotic fluid volume and/or composition. In the present study, six chronically-prepared pregnant ewes with singleton fetuses (128 +/- 1 day) were water deprived for 54 h to determine the effect on amniotic fluid. Maternal plasma osmolality (306.5 +/- 0.9 to 315.6 +/- 1.9 mOsm/kg) and AVP (1.9 +/- 0.2 to 22.2 +/- 3.2 pg/ml) significantly increased during dehydration. Similarly, fetal plasma osmolality (300.0 +/- 0.9 to 312.7 +/- 1.7 mOsm/kg) and AVP (1.4 +/- 0.1 to 10.4 +/- 2.4 pg/ml) increased in parallel to maternal values. Amniotic fluid osmolality (276.8 +/- 5.7 to 311.6 +/- 6.5 mOsm/kg) and sodium (139.8 +/- 4.8 to 154.0 +/- 5.4 mEq/l) and potassium (9.1 +/- 1.3 to 13.9 +/- 2.4 mEq/l) concentrations increased while a significant (35%) reduction in amniotic fluid volume occurred (871 +/- 106 to 520 +/- 107 ml). These results indicate that maternal dehydration may have marked effects on maternal-fetal-amniotic fluid dynamics, possibly contributing to the development of oligohydramnios.  相似文献   

8.
The arginine vasopressin (AVP) concentrations were determined in plasma and in cerebrospinal fluid (CSF) during a 24-hour period in 7 male patients suffering from hydrocephalus of differing etiologies. Blood and ventricular CSF samples were simultaneously collected every 2 h during the day (08.00-22.00) and every hour during the night (24.00-07.00). In both plasma and CSF, the AVP levels did not show significant time-related circadian variations. No significant correlation was found between the plasma and CSF AVP values during the 24-hour period. The data obtained indicate the absence of the plasma and CSF AVP circadian rhythm in hydrocephalic patients and suggest that in these patients, and possibly in healthy humans, physiological stimuli which are able to induce variations in the plasma AVP concentration during daily life do not alter the CSF AVP content.  相似文献   

9.
We have found that arginine vasopressin (AVP) (10 pg/ml) stimulates urinary kallikrein in the isolated erythrocyte perfused rat kidney. (In this model, perfusate flow rate approximates blood flow rates in vivo and morphology is normal.) Urinary kallikrein excretion rose from 6.9 +/- 0.8 to 14.9 +/- 2.4 ng/min 20 min after the addition of AVP to the perfusate, and then fell towards baseline levels over the next 30 min. 1-Desamino-8-D-AVP (8 pg/ml) caused a comparable increase in kallikrein excretion. Prostaglandin synthesis inhibition with indomethacin did not alter the stimulatory effect of AVP on kallikrein excretion. Parathyroid hormone 1-34 (144 ng/ml) and calcitonin (102 ng/ml) also increased urinary kallikrein. Kallikrein excretion rose from 9.1 +/- 2.0 to 24 +/- 4.5 ng/min in response to calcitonin and from 8.3 +/- 1.6 to 43.7 +/- 3.4 ng/min following the addition of parathyroid hormone to the perfusate. Kallikrein was found to accumulate in the perfusate in a linear fashion. Based on the slope of the relationship between perfusate kallikrein and time, the rate of release of kallikrein into the perfusate was estimated to be 0.79 ng/min in control kidneys. The rate of release of kallikrein into the perfusate in kidneys treated with AVP was the same (0.74 ng/min). Thus while kallikrein is released into the perfusate, this process is not influenced by AVP. In conclusion, AVP stimulates release of kallikrein into the urine (but not the perfusate) independently of systemic events. The effect of AVP is not mediated by prostaglandins. This effect of AVP is mediated via stimulation of the V2 receptor and also occurs in response to two other hormones (calcitonin and parathyroid hormone) that are known to stimulate adenyl cyclase in the rat distal nephron.  相似文献   

10.
The nature of the activity of vasopressin which is responsible for the inhibition of renin secretion was studied by comparing the effects of vasopressin (AVP) and analogs of AVP in anesthetized water-loaded dogs. Infusion of AVP (1.0 ng/kg/min) increased mean arterial pressure (MAP) and decreased heart rate (HR) and free water clearance (CH2O). Plasma renin activity (PRA) decreased from 11.9 +/- 4.7 to 3.8 +/- 1.7 ng/ml/3 hr (p less than 0.05). A selective antidiuretic agonist, 1-deamino-8-D-arginine vasopressin (1.0 ng/kg/min), which had no effect on MAP or HR but was effective as AVP in decreasing CH2O, decreased PRA from 13.5 +/- 4.6 to 7.0 +/- 2.9 ng/ml/3 hr (p less than 0.05). Infusion of a selective vasoconstrictor agonist, 2-phenylalanine-8-ornithine oxytocin (1.0 ng/kg/min), increased MAP and decreased HR but did not decrease CH2O or PRA. A vasoconstrictor antagonist, d(CH2)5Tyr(Me)AVP (10 micrograms/kg), completely blocked the MAP and HR responses to AVP but did not block the decrease in CH2O or PRA (5.9 +/- 1.8 to 2.9 +/- 1.6 ng/ml/3 hr) (p less than 0.001). Infusion of the 0.45% saline vehicle had no significant effect on MAP, HR, CH2O or PRA. These results indicate that the inhibition of renin secretion by vasopressin in anesthetized water-loaded dogs is due to its antidiuretic activity.  相似文献   

11.
Endothelin-1 (ET-1) acts at selected brain loci to elicit a pressor response and secretion of vasopressin (AVP). Glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype mediate ET-1-induced AVP secretion in vitro, but the role of glutamatergic receptors in the pressor response and the secretion of AVP in vivo has not been studied. We hypothesized that both the pressor response and AVP secretion in response to ET-1 microinjection into subfornical organ (SFO) would be suppressed by ionotropic glutamatergic receptor antagonists in the paraventricular nucleus (PVN). Sinoaortic denervated male Long Evans rats were equipped with intracerebral cannulae directed into the SFO and the magnocellular region of the PVN bilaterally. Experiments were performed 5 days later in conscious rats. Direct injection of 5 pmol ET-1 into the SFO resulted in a 20 +/- 3 mm Hg increase in mean arterial pressure (MAP) (+/- SE) and a 14.1 +/- 0.3 pg/ml increase in the mean plasma AVP level (+/- SE) (P < 0.001 vs. artificial CSF) that was blocked by selective ET(A) inhibition. Neither the pressor response nor the increase in plasma AVP in response to ET-1 was altered despite prior injection of the NMDA blocker diclozipine (5 microg, MK801) into PVN bilaterally. In contrast, bilateral PVN injection with 6-cyano-7-nitroquinoxaline-2,3-dione (40 nmol, CNQX) prevented the pressor response (MAP +/- SE, - 4 +/- 4 mm Hg) and also inhibited AVP secretion (mean AVP level +/- SE, 0.16 +/- 0.50 pg/ml) (P < 0.001 vs. vehicle in PVN after injection of ET-1 into SFO). These findings support the conclusion that both the pressor response and AVP secretion in response to ET-1 acting at the SFO are mediated by a non-NMDA, most likely an aminopropionic acid glutamatergic receptor within the PVN.  相似文献   

12.
Whether or not 1-desamino-8-D-arginine-vasopressin (DDAVP) reduces blood pressure or affects the release of arginine vasopressin (AVP) and renin is controversial, although evidence suggests AVP and renin are important in maintaining blood pressure during hemorrhage. We therefore investigated the effect of DDAVP on endogenous release of AVP and renin and on blood pressure during hemorrhage in dogs. In the control group the hemorrhage was performed at a rate of 0.4 ml.kg-1.min-1 for 40 min from the femoral artery. The plasma AVP concentration and renin activity (PRA) increased progressively in response to the hemorrhage, from 7.5 +/- 0.5 to 40.3 +/- 7.3 pg.ml-1, and from 11.8 +/- 1.5 to 20.5 +/- 4.2 ng.ml-1.h-1, respectively, while blood pressure decreased slightly. In the DDAVP group, intravenous infusion of DDAVP (2.5 ng.kg-1.min-1 for 40 min) and hemorrhage were simultaneously performed. The plasma DDAVP concentration increased progressively to 218 +/- 21.0 pg.ml-1. There was no significant difference, however, between the control and DDAVP groups in the response of AVP, PRA and blood pressure. The results suggested that DDAVP may not affect the release of AVP and renin or blood pressure during hemorrhage.  相似文献   

13.
A sensitive, reliable and simplified HPLC assay for simultaneous measurement of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in human cerebrospinal fluid (CSF), platelets and plasma is described. Perchloric acid is used for one step precipitation of proteins and extraction of 5-HT and 5-HIAA. Precision of the assay has been increased by calibration of the instrument using serotonin-free plasma spiked with known amount of standards and N-w-methyl-5-hydroxytryptamine as internal standard. Integration of the peaks and calculations are achieved by a preprogrammed data module using ratio method. As little as 20 pg/ml of serotonin in the deproteinated sample can be detected using this procedure. In a group of surgical patients, plasma 5-HT concentration is (Mean +/- S D) 3.4 +/- 2.7 ng/ml and that of platelet 748.3 +/- 448.3 ng/10(9) platelets. In CSF, 5-HT is found to be 3.3 +/- 3.4 ng/ml and 5-HIAA is 15.1 +/- 7.3 ng/ml. A good correlation (r = 0.648, p less than .0001) is observed between 5-HT and 5-HIAA in CSF.  相似文献   

14.
The functions of prolactin in the fetus remain speculative. No obvious physiological role has been found for the prolactin present in the fetal or maternal plasma and amniotic fluid compartments. The aim of the present study was to investigate changes in fetal plasma prolactin following intracerebroventricular (i.c.r.) administration to the fetus of artificial cerebrospinal fluid of different tonicities. A lateral ventricle catheter was placed in 11 fetuses at 107-128 days of gestation. Either isotonic artificial cerebrospinal fluid (300 mOsm.1(-1);n = 9), 15% polyethylene glycol (340 mOsm.1(-1);n = 5), or 7% distilled water in isotonic artificial cerebrospinal fluid (270 mOsm.1(-1);n = 9) was infused i.c.v. at 35 mu1.min-1 for 240 min. At 180 min thyrotropin releasing hormone (TRH) was administered through a fetal a fetal jugular catheter. Fetal carotid arterial blood gases, plasma osmolality and concentrations of prolactin, vasopressin (AVP), and norepinephrine (NE) were measured. Administration of hypotonic artificial cerebrospinal fluid produced an increase in fetal plasma prolactin from 46.6 +/- 36 ng.ml-1 at 0 min to 83.3 +/- 49 ng.ml-1 at 180 min (mean +/- SEM; P less than 0.05). No changes in either AVP or NE were observed. Administration of hypertonic artificial cerebrospinal fluid produced a decrease in plasma prolactin from 85 +/- 57 at time 0 to 49 +/- 35 at 180 min (P less than 0.05). No changes in either AVP or NE were observed. Fetal plasma prolactin, AVP, and NE did not change during control infusion of isotonic artificial cerebrospinal fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Homozygous Brattleboro rats display pronounced diabetes insipidus and when treated continuously with arginine vasopressin (AVP) acquire the ability to produce concentrated urine. In this study, the effects of continual AVP replacement on the pharmacological properties of the renal medullary V2 receptor and coupling to adenylate cyclase were examined. Osmotic minipumps that delivered AVP at four different rates were implanted into male homozygous Brattleboro rats. At the end of the 14 day treatment period, urine osmolalities were 280 +/- 24, 474 +/- 105, 1777 +/- 304 and 2202 +/- 175 mOsm/kg H2O for the 0, 31.25, 62.5 and 125 ng/hr treatment groups, respectively. Plasma AVP levels were below the level of detection for the 0 and 31.25 ng/hr treatment groups, and were 2.5 +/- 0.5 and 6.5 +/- 1.8 pg/ml for the 62.5 and 125 ng/hr treatment groups. Saturation experiments using [3H] AVP and renal medullary membranes revealed binding site concentrations of 57 +/- 9, 84 +/- 23, 164 +/- 17 and 150 +/- 18 fmol/mg protein for the 0, 31.25, 62.5 and 125 ng/hr treatment groups, respectively. AVP-stimulated cyclic AMP accumulation was enhanced in renal medullary membranes prepared from the 62.5 and 125 ng/hr treatment groups when compared to that in the 0 and 31.25 ng/hr treatment groups. From these results, it appears that circulating AVP is necessary for expression of functional V2 receptors in the homozygous Brattleboro rat renal medulla.  相似文献   

16.
We introduced the radioimmunoassay (RIA) of arginine vasopressin (AVP) with standard AVP and antiserum to AVP (both Calibiochem). The sensitivity of the system was increased from the declared 4pg to 1 pg per tube by preparing AVP-125I of high specific activity (about 1,500 mCi/mg) and by modifying the reaction conditions. The sensitivity of the method was adequate for measuring AVP in urine and in concentrated plasma extracts, even under physiological conditions. Reliability of the results depended upon maintenance of approximately the same osmolarity in all the RIA samples. The mean plasma AVP level, uncorrected for AVP extraction losses, was 1.52 +/- 0.20 pg/ml for an ad libitum fluid intake; in fluid deprivation it rose in proportion to the osmolarity of the plasma to 5.83 +/- 0.42 pg/ml at 12 hours and to 19.09 +/- 4.51 pg/ml at 36 hours. Extraction recovery of added AVP was about 63%. The urinary AVP concentration varied according to the patients' state of hydratation from undetectable values at UOsm less than 200 mOsm/1 to a mean 16.5 +/- 7.9 pg/ml in the presence of an ad libitum fluid intake and to 29.1 +/- 7.5 pg/ml after 12 hours' and 117.2 +/- 13.7 pg/ml after 36 hours' deprivation of fluids.  相似文献   

17.
Pharmacological experiments have implicated a role for central arginine vasopressin (AVP) in regulating paternal behavior in monogamous prairie voles. Although nonmonogamous meadow voles exhibit appreciable paternal care when housed under winter, short day lengths (SD), no research has examined whether the same neurobiological systems are involved in regulating paternal behavior in a nonmonogamous species when it behaves paternally. The goal of these experiments was to determine whether central administration of AVP, but not cerebrospinal fluid (CSF), affected the suppression of pup-directed aggression and/or the onset of paternal behavior in meadow voles. Data from experiment 1 implicated a role for AVP in facilitating changes in male behavior: central administration of 1 ng of AVP (but not 3 ng or CSF) inhibited pup-directed aggression in previously pup-aggressive males, and 3 ng of AVP (but not 1 ng or CSF) induced paternal behavior in previously nonpaternal males. In contrast, AVP (1 and 3 ng) did not enhance paternal behavior in already paternal males. Experiment 2 tested the specificity of AVP. Previous research indicated that 24 h of unmated cohabitation with a female reliably induced paternal behavior in SD males. Hence, experiment 2 examined whether administration of a V(1a) AVP antagonist (AVPA), but not CSF, prior to 24 h of unmated cohabitation would block the onset of paternal behavior. Males that received CSF displayed paternal behavior faster and engaged in more investigatory and paternal behaviors than males that received AVPA. Thus, pharmacological experiments support the hypothesis that AVP likely regulates paternal behavior in both facultatively and consistently paternal vole species.  相似文献   

18.
To determine estrogen effects on osmotic regulation of arginine vasopressin (AVP) and body fluids, we suppressed endogenous estrogen and progesterone using the gonadotropin-releasing hormone (GnRH) analog leuprolide acetate (GnRHa). Subjects were assigned to one of two groups: 1) GnRHa alone, then GnRHa + estrogen (E, n = 9, 25 +/- 1 yr); 2) GnRHa alone, then GnRHa + estrogen with progesterone (E/P, n = 6, 26 +/- 3). During GnRHa alone and with hormone treatment, we compared AVP and body fluid regulatory responses to 3% NaCl infusion (HSI, 120 min, 0.1 ml. min(-1). kg body wt(-1)), drinking (30 min, 15 ml/kg body wt), and recovery (60 min of seated rest). Plasma [E(2)] increased from 23.9 to 275.3 pg/ml with hormone treatments. Plasma [P(4)] increased from 0.6 to 5.7 ng/ml during E/P and was unchanged (0.4 to 0.6 ng/ml) during E. Compared with GnRHa alone, E reduced osmotic AVP release threshold (275 +/- 4 to 271 +/- 4 mosmol/kg, P < 0.05), and E/P reduced the AVP increase in response during HSI (6.0 +/- 1.3 to 4.2 +/- 0.6 pg/ml at the end of HSI), but free water clearance was unaffected in either group. Relative to GnRHa, pre-HSI plasma renin activity (PRA) was greater during E (0.8 +/- 0.1 vs. 1.2 +/- 0.2 ng ANG I. ml(-1). h(-1)) but not after HSI or recovery. PRA was greater than GnRHa during E/P at baseline (1.1 +/- 0.2 vs. 2.5 +/- 0.6) and after HSI (0.6 +/- 0.1 vs. 1.1 +/- 1.1) and recovery (0.5 +/- 0.1 vs. 1.3 +/- 0.2 ng ANG I. ml(-1). h(-1)). Baseline fractional excretion of sodium was unaffected by E or E/P but was attenuated by the end of recovery for both E (3.3 +/- 0.6 vs. 2.4 +/- 0.4%) and E/P (2.8 +/- 0.4 vs 1.7 +/- 0.4%, GnRHa alone and with hormone treatment, respectively). Fluid retention increased with both hormone treatments. Renal sensitivity to AVP may be lower during E due to intrarenal effects on water and sodium excretion. E/P increased sodium retention and renin-angiotensin-aldosterone stimulation.  相似文献   

19.
Arginine vasopressin (AVP) is a neuroendocrine hormone synthesized in the hypothalamus, and is stored and secreted by the posterior pituitary gland in response to stimuli such as plasma hypertonicity and hypotension. The primary physiologic roles of AVP include plasma osmolality and blood pressure regulation. We have previously demonstrated that chronic prenatal plasma hypertonicity alters the AVP regulatory pathway in newborn lambs. The objectives of the present study were to evaluate prolonged effects of antenatal plasma hypertonicity on neonatal plasma osmoregulation. Pregnant ewes at 119 +/- 3 days of gestation were water restricted to achieve and maintain hypertonicity until normal-term delivery. After delivery, ewes were provided food and water ad libitum and lambs were allowed maternal nursing. At the age of 28 days, blood samples were obtained for the analysis of plasma osmolality, electrolytes, and AVP levels from study (n= 5) and age-matched control (n= 6) lambs. Subsequently, lambs were euthanized, and the pituitary and hypothalamus were processed for the determination of pituitary AVP content by radioimmunoassay, and AVP gene expression by Northern analysis. In response to water restriction, maternal plasma osmolality significantly increased (306 +/- 1.1 to 326 +/- 1.2 mOsm/kg, P< 0.001). At the age of 28 days, plasma sodium level was higher in study (prenatally dehydrated) than control lambs (144.6 +/- 0.4 vs 142.6 +/- 0.3,P< 0.05). Study lambs had higher plasma AVP concentrations than the control lambs (4.1 +/- 0.4 vs 1.7 +/- 0.4 pg/ml,P< 0.05). Similarly, total pituitary AVP content was higher in thein utero hypertonic lambs than in the control lambs (6.5 +/- 1.0 vs 2.8 +/-1.2 microg, P< 0.05). However, there was no difference in hypothalamic AVP mRNA levels between the two groups. The present study demonstrates that chronic maternal and fetal plasma hypertonicity has prolonged effects on pituitary and plasma AVP, as well as plasma sodium in neonatal lambs, providing further evidence suggesting prenatal imprinting of osmoregulation through at least 1 month of age.  相似文献   

20.
To investigate the hypothesis that a reduction in plasma volume (PV) induced by diuretic administration would result in an increase in the fluid and electrolyte hormonal response to exercise, ten untrained males (VO(2) peak = 3.96 +/- 0.14 l/min) performed 60 min of cycle ergometry at 61 % VO(2) peak twice. The test was carried out once under control conditions (CON) (placebo) and once after 4 days of diuretic administration (DIU) (Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). Calculated resting PV decreased by 14.6 +/- 3.3 % (p < 0.05) with DIU. No difference in plasma osmolality was observed between conditions. For the hormones measured, differences (p < 0.05) between conditions at rest were noted for plasma renin activity (PRA) (0.62 +/- 0.09 vs. 5.61 +/- 0.94 ng/ml/h), angiotensin I (ANG 1) (0.26 +/- 0.03 vs. 0.56 +/- 0.08 ng/ml), aldosterone (ALD) (143 +/- 14 vs. 1603 +/- 302 pg/ml), arginine vasopressin (AVP) (4.13 +/- 1.1 vs. 9.58 +/- 1.6 pg/ml) and atrial natriuretic peptide (alpha-ANP) (11.5 +/- 2.8 vs. 6.33 +/- 1.0 pg/ml). The exercise resulted in increases (p < 0.05) in PRA, ANG I, ALD, AVP, alpha-ANP. DIU led to higher levels of PRA, ANG I, and ALD (p < 0.05) and lower levels of alpha-ANP (p < 0.05) compared to CON. Arginine vasopressin was not affected by the loss of PV. For the catecholamines--norepinephrine (NE) and epinephrine (EPI)--only NE was higher during exercise with DIU compared to CON (p < 0.05). For PRA and ALD, the higher levels observed during exercise with DIU could be explained both by higher resting levels and a greater increase during exercise itself. For ANG I and NE, the effect of DIU only manifested itself during exercise. In contrast, the lower alpha-ANP observed during exercise with DIU was due to the lower resting levels. These results support the hypotheses that hypohydration leads to alterations in the secretion of all of the fluid and electrolyte hormones with the exception of AVP. The specific mechanisms of these alterations remain unclear, but appear to be related directly to the decrease in PV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号