首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Spermatogenesis inHydra carnea was investigated. The cell proliferation and differentiation kinetics of intermediates in the spermatogenesis pathway were determined, using quantitative determinations of cell abundance, pulse and continuous labelling with3H-thymidine and nuclear DNA measurements. Testes develop in the ectoderm of male hydra as a result of interstitial cell proliferation. Gonial stem cells and proliferating spermatogonia have cell cycles of 28 h and 22 h, respectively. Stem cells undergo four, five or six cell divisions prior to meiosis which includes a premeiotic S+G2 phase of 20 h followed by a long meiotic prophase (22 h).Spermatid differentiation requires 12–29 h. When they first appear, testes contain only proliferating spermatogonia; meiotic and postmeiotic cells appear after 2 and 3 days, respectively and release of mature sperm begins after 4 days. Mature testes produce about 27,000 sperm per day over a period of 4–6 days: about 220 gonial stem cells per testis are required to support this level of sperm differentiation. Further results indicate that somatic (e.g. nematocyte) differentiation does not occur in testes although it continues normally in ectodermal tissue outside testes. Our results support the hypothesis that spermatogenesis is controlled locally in regions of the ectoderm where testes develop.  相似文献   

2.
Organ cultures and primary cell cultures of medaka (Oryzias latipes) testis were compared with respect to cell viability and cell proliferation. The analysis by fluorescence microscopy and flow cytometry showed that in both cultures, the cells remained viable for at least 1 day and cell proliferation could be analyzed reliably by BrdU incorporation. The proliferating cells were mostly spermatogonia located at the periphery of the testis in tissue sections. Both culture systems were used to study the effect of 17-alpha-ethynylestradiol on cell proliferation. The results obtained with organ and primary cultures were consistent: low concentrations (0.01 and 1 nm) of synthetic estrogen stimulated cell proliferation slightly, while a higher concentration (100 nm) had an inhibitory effect. Both culture methods are suitable for the analysis of substances that might interfere with germ cell proliferation or other functions in spermatogenesis.  相似文献   

3.
We previously cultured fragments of newt testes in chemically defined media and showed that mammalian follicle-stimulating hormone (FSH) stimulates proliferation of spermatogonia as well as their differentiation into primary spermatocytes (Ji et al., 1992; Abe and Ji, 1994). Next, we indicated in cultures composed of spermatogonia and somatic cells (mainly Sertoli cells) that FSH stimulates germ cell proliferation via Sertoli cells (Maekawa et al., 1995). However, the spermatogonia did not differentiate into primary spermatocytes, but instead died. In the present study, we embedded large reaggregates of spermatogonia and somatic cells (mainly Sertoli cells) within a collagen matrix and cultured the reaggregates on a filter that floated on chemically defined media containing FSH; in this revised culture system, spermatogonia proliferated and differentiated into primary spermatocytes. The viability and percentage of germ cells differentiating into primary spermatocytes were proportional to the percentage of somatic cells in the culture, indicating that differentiation of spermatogonia into primary spermatocytes is mediated by Sertoli cells.  相似文献   

4.
Summary The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts ofPeriplaneta americana was fractionated by highperformance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larvalHeliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body ofMamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells. Mention of products in this article does not imply endorsement by the U.S. Department of Agriculture.  相似文献   

5.
6.
Summary The routes for adsorptive and receptor-mediated endocytosis were studied in vivo after microinjection of tracers into the lumen of the seminiferous tubules, and in vitro in isolated germ cells of different mammals. Cationic ferritin was located on the plasma membrane, in vesicles, in tubules, in multivesicular bodies and in lysosome-like granules of mouse spermatocytes. In these cells the number of multivesicular bodies varied during spermatogenesis. Spermatids and to a lesser extent residual bodies also performed adsorptive endocytosis. In the rat and monkey (Macaca fascicularis) diferric transferrin was specifically taken up by germ cells via receptor-mediated endocytosis. The labelling was observed subsequently in membrane pits, vesicles, endosome-like bodies and pale multivesicular bodies. A progressive decrease in the frequency of the labelling of the germ cells by transferrin-gold particles was observed from spermatogonia to spermatocytes and to early spermatids, which could indicate that iron is particularly required by germ cells during the mitotic and meiotic processes. Adsorptive and receptor-mediated endocytosis therefore occurs in all classes of germ cells. These endocytic processes are most probably required for germ cell division, differentiation and metabolism.  相似文献   

7.
Summary Cells in fetal adipose tissue and cells in vitro are characterized by rapid proliferation. Serum factors have been shown to be important for the rapid proliferation of cells in vitro. The present experiment was performed to determine if neuroendocrine regulatory mechanisms of the fetus can influence the actions of serum factors on preadipocyte proliferation and differentiation in vitro.Sera were obtained from decapitated fetal pigs and intact littermates during gestation. Sera were tested for their effects on primary cultures of preadipocytes and stromalvascular cells derived from inguinal adipose tissue of young Sprague-Dawley rats. Coverslip cultures were used for histochemical analysis of enzymes after 12 days of incubation with test media.Analysis of growth curves produced from sequential [3H]-thymidine labeling indicated that fetal age influences rates of proliferation. Sera from decapitated fetal pigs specifically reduced the number of proliferating preadipocytes in culture. Sera from decapitated fetal pigs induced a minimum of 50% less differentiation of sn-glycerol-3-phosphate dehydrogenase activity than sera from intact pigs at all fetal ages. Histochemical staining for enzymes of differentiating preadipocytes was also reduced in cultures incubated with sera from decapitated fetal pigs in comparison to sera from intact pigs. The present study has demonstrated that the in vivo effect of decapitation on fetal adipose tissue development is a consequence of alterations in systemic factors present in serum in response to removal of central regulation by the hypothalamic-pituitary axis.  相似文献   

8.
Cell type-specific lectin binding is a useful tool for the analysis of developing systems. We describe the binding pattern of 21 different fluorescein isothiocyanate (FITC)-labelled lectins to the testis of two model teleost species, the medaka (Oryzias latipes) and the tilapia (Oreochromis niloticus). The analysis of the binding pattern was carried out on tissue sections (medaka and tilapia) and using primary culture cells (only tilapia). Lectin binding was studied by confocal microscopy and for histological analysis some sections were, in addition, stained with bodipy to gain additional information concerning the cytological organization of the cystic mode of spermatogenesis in fish. The observed differences in lectin staining of different cell types in primary cultures were quantified by flow cytometry. Only few lectins bound specifically to haploid cells while the reaction to diploid or tetraploid cells was generally stronger. However, the extracellular material around the haploid spermatids and spermatozoa in spermatocysts showed a strong staining reaction with several lectins (e.g., Phaseolus vulgaris Erythro agglutinin). The apparent differences in the cellular lectin-binding pattern can be used to identify particular cell types, to monitor their differentiation in vitro or to enrich particular cell types from heterogeneous cultures using magnetic beads coated with anti-FITC antibodies. Using the latter approach, we show that it is possible to enrich for gonial cells and at the same time deplete the preparation for haploid cells and Sertoli cells.  相似文献   

9.
Seasonal changes of testicular activity of the swordfish Xiphias gladius and correlations of plasma levels of testosterone (T) and 11-ketotestosterone (11-KT) with proliferation and apoptosis of germ cells, determined, respectively, with monoclonal antibodies against proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated d'UTP nick end labelling, are described. Three phases of the reproductive cycle were found: active spermatogenic (May), spawning (June to July) and spent (August to September) stages. Germ cell proliferating activity was highest in May, decreased during June to July and remained stable during August to September. Apoptotic germ cells, primary spermatocytes and spermatogonia, were present in all the specimens analysed and were more abundant in May. The levels of 11-KT in plasma were always higher than T and were highest in May, in concomitance with the maximum proliferation and apoptosis rate of germ cells.  相似文献   

10.
11.
In general, the incidence of proliferating cells parallels that of carcinogenesis. We have investigated proliferating activity and phenotype expression in epithelial cells in normal tissue, mucinous metaplasia and ductal adenocarcinoma of the pancreas. Twenty-eight resected pancreases (15 cases of pancreatic ductal adenocarcinoma and 13 cases of other diseases) were examined. Formalin-fixed, paraffin-embedded tissue sections were examined for proliferating cell activity using histone H3 mRNA in situ hybridization and immunostaining for Ki-67. In the normal pancreas, the labelling indices for proliferating cells were low and no generating zone was found. The following progressive increase was found in the labelling indices: normal ductal epithelium < mucinous metaplasia without papillary hyperplasia < mucinous metaplasia with papillary hyperplasia < ductal carcinoma. In the pancreatic ductal adenocarcinomas, the S-phase fraction, as defined by the ratio H3-mRNA-labelling index/Ki-67-labelling index, increased as the degree of differentiation decreased. Mucinous metaplasia with papillary hyperplasia showed organoid differentiation toward pyloric mucosa. If used in combination with other proliferative markers on paraffin-embedded tissue sections, histone H3 mRNA in situ hybridization could open broader perspectives on the biology of cell proliferation in the pancreatic ductal system.  相似文献   

12.
 Embryonic stem (ES) cells from early vertebrate embryos only rarely retain their full developmental potential under in vitro culture conditions, but undergo differentiation and lose their ability for chimeric embryogenesis. This is reflected by the fact that the ES cell technology to date could only be fully developed in mice. In the fish Oryzias latipes, the medaka, one ES-like cell line, MES1, has been established which gives rise to a high frequency of somatic chimeras but a low degree of chimerism. Here we have tested the effect of donor genotype and cultivation time on the efficiency of cell culture derivation and on chimera formation. The HB12A, HB32C and HNI strains of medaka most efficiently and reproducibly give rise to blastula-derived cell cultures that produce pigmented chimeras in albino hosts. Seven chimeras grew to male or female adults with normal fertility, although none of them showed obvious donor germline contribution. During prolonged in vitro propagation the frequency of chimeras and the degree of chimerism dropped to a value retained in the long-term cultured MES1 cells. Obviously, genetic factors in host/donor compatibility and physiological changes during prolonged in vitro culture may compromise, but do not abolish, the developmental potential of medaka ES-like cells. Thus, elucidation of conditions that will expand the developmental potential of medaka blastula cell cultures should lead to a further improvement towards establishment of the ES cell technology in medaka. Received: 5 June 1998 / Accepted: 6 July 1998  相似文献   

13.
We have used a retroviral vector (RCAS) to overexpress wild-type chicken c-Jun or a deletion mutant of chicken c-Jun (JunΔ7) lacking the DNA binding region to investigate the possible role of c-Jun in lens epithelial cell proliferation and differentiation. Both constructs were efficiently expressed in primary cultures of embryonic chicken lens epithelial cells. Overexpression of c-Jun increased the rate of cell proliferation and greatly delayed the appearance of “lentoid bodies,” structures which contain differentiated cells expressing fiber cell markers. Excess c-Jun expression also significantly decreased the level of βA3/A1-crystallin mRNA, without affecting αA-crystallin mRNA. In contrast, the mutated protein, JunΔ7, had no effect no proliferation or differentiation but markedly increased the level of αA-crystallin mRNA in proliferating cell cultures. These results suggest that c-Jun or Jun-related proteins may be negative regulators of αA- and βA3/A1-crystallin genes in proliferating lens cells.  相似文献   

14.
In vivo analysis of Drosophila melanogaster has enhanced our understanding of many biological processes, notably the mechanisms of heredity and development. While in vivo analysis of mutants has been a strength of the field, analyzing fly cells in culture is valuable for cell biological, biochemical and whole genome approaches in which large numbers of homogeneous cells are required. An efficient genetic method to derive Drosophila cell lines using expression of an oncogenic form of Ras (Ras(V12)) has been developed. Mutations in tumor suppressors, which are known to cause cell hyperproliferation in vivo, could provide another method for generating Drosophila cell lines. Here we screened Drosophila tumor suppressor mutations to test if they promoted cell proliferation in vitro. We generated primary cultures and determined when patches of proliferating cells first emerged. These cells emerged on average at 37 days in wild-type cultures. Using this assay we found that a Pten mutation had a strong effect. Patches of proliferating cells appeared on average at 11 days and the cultures became confluent in about 3 weeks, which is similar to the timeframe for cultures expressing Ras(V12). Three Pten mutant cell lines were generated and these have now been cultured for between 250 and 630 cell doublings suggesting the life of the mutant cells is likely to be indefinite. We conclude that the use of Pten mutants is a powerful means to derive new Drosophila cell lines.  相似文献   

15.
Culture conditions that support the in vitro development of many spermatogenic stages from the frog Xenopus laevis are described. Spermatogenic cells were dissociated with collagenase and preelongation stages aseptically isolated by density gradient centrifugation in Metrizamide. The cells were then cultured in modified forms of defined nutrient oocyte medium (DNOM). The development of spermatogenic cells was affected significantly by changes in fetal calf serum concentration, cell density, energy sources, and NaCl concentration. Optimum in vitro spermatid development was obtained when spermatogenic cells were cultured at relatively high densities (3–7 × l07 cells/25 cm2) in DNOM modified to contain 10% heat-inactivated, dialyzed fetal calf serum, 2 mM 1-glutamine, 0.1 % glucose, 15 mM HEPES buffer (pH 7.4), and 38.3–48.3 mM NaCl. These culture conditions also supported the differentiation of preelongation spermatids and spermatocytes isolated by density-gradient centrifugation in Metrizamide and subsequent unit gravity sedimentation in gradients of bovine serum albumin. Approximately 95 % of such isolated spermatids and spermatocytes continued differentiating in vitro for 14 days at in vivo rates. Phase-contrast and electron microscopy of the cultured cells demonstrated that in vitro differentiation was morphologically normal between the leptotene and elongate spermatid stages. Autoradiographic studies of preleptotene development demonstrated that spermatogonia proliferated and preleptotene spermatocytes developed to zygotene in 12-day cultures. The results suggest that many spermatogenic stages in Xenopus can develop independent of Sertoli cells, and demonstrate that spermatogenic cell cultures can now be used for in vitro studies of spermatogenesis.  相似文献   

16.
dead end (dnd) was identified in zebrafish as a gene encoding an RNA-binding protein essential for primordial germ cell (PGC) development and gametogenesis in vertebrates. The adult dnd RNA expression has been restricted to the ovary in Xenopus or to the testis in mouse. Its protein product is nuclear in chicken germ cells but both cytosolic and nuclear in mouse cell cultures. Here we report the cloning and expression pattern of Odnd, the medakafish (Oryzias latipes) dnd gene. Sequence comparison, gene structure, linkage analysis and expression demonstrate that Odnd encodes the medaka Dnd orthologue. A systematic comparison of Dnd proteins from five fishes and tetrapod representatives led to the identification of five previously unidentified conserved regions besides the RNA recognition motif. The Odnd RNA is maternally supplied and preferentially segregated with PGCs. Its adult expression occurs in both sexes and is restricted to germ cells. In the testis, Odnd is abundant in spermatogonia and meiotic cells but absent in sperm. In the ovary, Odnd RNA persists throughout oogenesis. Furthermore, we developed a dual color fluorescent in situ hybridization procedure allowing for precise comparisons of expression and distribution patterns between two genes in medaka embryos and adult tissues. Importantly, this procedure co-localized Odnd and Ovasa in testicular germ cells and PGCs. Surprisingly, by cell transfection and embryo RNA injection we show that ODnd is cytoplasmic in cell cultures, cleavage embryos and PGCs. Therefore, medaka dnd encodes a cytoplasmic protein and identifies embryonic and adult germ cells of both sexes.  相似文献   

17.
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.  相似文献   

18.
The development of enzyme patterns was followed in the course of: (a) the irreversible cell differentiation via division and expansion to maturity in the root tip and coleoptile of the intact seedlings, (b) the irreversible cell dedifferentation associated with induction and establishment of callus from the growing internodes, and (c) the growth cycle (proliferationstationary phase) in callus and cell-suspension cultures of maize (Zea mays L.). By measuring the activities of glycolytic, mitochondrial, microbody and hydrolytic enzymes cells proliferating in vivo and in vitro could be compared and changes related to cessation or resumption of cell division could be studied.Proliferating cells of callus and suspension cultures maintained by serial culture did not differ from those of the root meristem and coleoptile in the specific activities of hexokinase, phosphoglycerate kinase and phosphopyruvate hydratase. Proliferation in vitro resulted in an enormous increase in the ratio g glutamate-dehydrogenase/cytochrome-oxidase activity and in the level of acid-phosphatase activity, with concomitant drop in galactosidase and xylosidase activity. A 3-5-fold increase of alcohol-dehydrogenase, lactate-dehydrogenase and catalase activities was characteristic of dividing callus cells, while a ca. 100-fold increase in the fructofuranosidase-to-glucosidase activity ratio marked cell proliferation in suspension-cultured cells.Changing enzyme activities after cessation of proliferation were quite similar in root tips and coleoptiles, except those of alcohol dehydrogenase and catalase. The enzyme rearrangement during callus establishment and in the growth cycle of callus cultures was in most cases comparable to that in the intact tissues, while the changes from the dividing to the non-dividing cells in suspension cultures, in contrast, differed widely from those in the intact tissues and callus. Galactosidase and xylosidase were the only activities that showed a similar trend of changes in all the investigated, intact and in-vitro-grown cells.Thus, judged by the pattern of enzyme development, the cell suspension appears to be a unique system, virtually unrelated to the growing cells of the intact tissues. It is also very difficult to draw a definite distinction between the metabolic consequences of cell growth and enzyme modulations in cell suspensions as the cells adapt their metabolism to the environmental changes in liquid medium.  相似文献   

19.
We previously showed that mammalian FSH stimulates the proliferation of newt spermatogonia and induces their differentiation into primary spermatocytes in vitro. In the current study, to examine a possibility that stem cell factor (SCF) is involved in the proliferation of newt spermatogonia and/or their differentiation into primary spermatocytes, human recombinant SCF (rhSCF) was added to organ culture of testicular fragments. rhSCF was found to stimulate the spermatogonial proliferation and the spermatogonia progressed to the seventh generation that is the penultimate stage before primary spermatocyte stage. However, the spermatogonia did not differentiate into primary spermatocytes, but instead died of apoptosis. These results indicate that rhSCF promotes the proliferation of newt spermatogonia, but not the initiation of meiosis.  相似文献   

20.
Objectives: Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. Materials and methods: After 3 days culture or after long‐term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT‐mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5‐(and‐6)‐carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. Results: After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long‐term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. Conclusions: Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long‐term culture of mES cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号