首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochromes b561 (Cyts b561) are a family of intrinsic membrane proteins involved in ascorbate-mediated transmembrane electron transport. The chromaffin granule Cyt b561 (CGCytb) is believed to transport electrons donated by extravesicular ascorbate (ASC) across the membrane to intravesicular monodehydroascorbate (MDA) supporting catecholamine synthesis in neuroendocrine tissues. Another isoform, the duodenal Cyt b561 (Dcytb), was reported to have ferric reductase activity, possibly facilitating intestinal iron uptake. Herein, a new Cyt b561 homologue, LCytb (for lysosomal Cytb561) was found expressed in the late endosomal-lysosomal membrane. LCytb shared high sequence similarity with CGCytb (45% identity) and Dcytb (42% identity). Moreover, four heme-coordinating His residues, and putative ASC and MDA binding sites were highly conserved. Recombinant LCytb exhibited an ASC-reducible b-type Cyt absorbance spectrum with alpha-band maximum at 561 nm in the spectrum of the reduced protein. Northern blots and Western blots revealed that LCytb was predominantly expressed in lung, spleen, thymus, testis and placenta. In situ hybridization and immunofluorescence studies further demonstrated that the protein was expressed in the alveolar macrophages of the lung, in the white pulp of the spleen, widespread in the thymus, and in the Sertoli cells of the testis. Sequence analysis indicated the presence of a (DE)XXXL(LI)-type signal in the C-terminal of the protein, predicting a late endosomal-lysosomal subcellular localization. This localization was confirmed by double labeling experiments in RAW264.7 and 293 cells, stably transfected with LCytb.  相似文献   

2.
Njus D  Wigle M  Kelley PM  Kipp BH  Schlegel HB 《Biochemistry》2001,40(39):11905-11911
The 1 equiv reaction between ascorbic acid and cytochrome b(561) is a good model for redox reactions between metalloproteins (electron carriers) and specific organic substrates (hydrogen-atom carriers). Diethyl pyrocarbonate inhibits the reaction of cytochrome b(561) with ascorbate by modifying a histidine residue in the ascorbate-binding site. Ferri/ferrocyanide can mediate reduction of DEPC-treated cytochrome b(561) by ascorbic acid, indicating that DEPC-inhibited cytochrome b(561) cannot accept electrons from a hydrogen-atom donor like ascorbate but can still accept electrons from an electron donor like ferrocyanide. Ascorbic acid reduces cytochrome b(561) with a K(m) of 1.0 +/- 0.2 mM and a V(max) of 4.1 +/- 0.8 s(-1) at pH 7.0. V(max)/K(m) decreases at low pH but is approximately constant at pH >7. The rate constant for oxidation of cytochrome b(561) by semidehydroascorbate decreases at high pH but is approximately constant at pH <7. This suggests that the active site must be unprotonated to react with ascorbate and protonated to react with semidehydroascorbate. Molecular modeling calculations show that hydrogen bonding between the 2-hydroxyl of ascorbate and imidazole stabilizes the ascorbate radical relative to the monoanion. These results are consistent with the following mechanism for ascorbate oxidation. (1) The ascorbate monoanion binds to an unprotonated site (histidine) on cytochrome b(561). (2) This complex donates an electron to reduce the heme. (3) The semidehydroascorbate anion dissociates from the cytochrome, leaving a proton associated with the binding site. (4) The binding site is deprotonated to complete the cycle. In this mechanism, an essential role of the cytochrome is to bind the ascorbate monoanion, which does not react by outer-sphere electron transfer in solution, and complex it in such a way that the complex acts as an electron donor. Thermodynamic considerations show that no steps in this process involve large changes in free energy, so the mechanism is reversible and capable of fulfilling the cytochrome's function of equilibrating ascorbate and semidehydroascorbate.  相似文献   

3.
Bérczi A  Su D  Asard H 《FEBS letters》2007,581(7):1505-1508
Ascorbate-reducible cytochromes b561 (Cyts-b561) are a class of intrinsic trans-membrane proteins. Tonoplast Cyt-b561 (TCytb), one of the four Cyt-b561 isoforms in Arabidopsis was localized to the tonoplast. We demonstrate here that the optical spectra, EPR spectra and redox potentials of recombinant TCytb are similar to those of the well characterized bovine chromaffin granule Cyt-b561. We provide evidence for the reduction of ferric-chelates by the reduced TCytb. It is also shown that TCytb is capable of trans-membrane electron transport from intracellular ascorbate to extracellular ferric-chelates in yeast cells.  相似文献   

4.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. We found previously that treatment of oxidized cytochrome b(561) with diethyl pyrocarbonate caused specific N-carbethoxylation of three fully conserved residues (His88, His161, and Lys85) located at the extravesicular side. The modification lead to a selective loss of the electron-accepting ability from ascorbate without affecting the electron donation to monodehydroascorbate radical [Tsubaki, M., Kobayashi, K., Ichise, T., Takeuchi, F., and Tagawa, S. (2000) Biochemistry 39, 3276-3284]. In the present study, we found that these modifications lead to a drastic decrease of the midpoint potential of heme b at the extravesicular side from +60 to -30 mV. We found further that the O-carbethoxylation of one tyrosyl residue (Tyr218) located at the extravesicular side was significantly enhanced under alkaline conditions, leading to a very slow reduction process of the oxidized heme b with ascorbate. On the other hand, the presence of ascorbate during the treatment with diethyl pyrocarbonate was found to suppress the carbethoxylation of His88, His161, and Tyr218, whereas the modification level of Lys85 was not affected. Concomitantly, the final reduction level of heme b with ascorbate was protected, although the fast reduction phase was not fully restored. These results suggest that the two heme-coordinating histidyl residues (His88 and His161) are also a part of the ascorbate binding site. Tyr218 and Lys85 may have a role in the recognition/binding process for ascorbate and are indispensable for the fast electron transfer reaction.  相似文献   

5.
Cytochrome (cyt) b(561) proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b(561)-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b(561) paralogs from Arabidopsis thaliana (Acytb(561)-A, Acytb(561)-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb(561)-A resembles the best characterised member of the CYBASC family, the cytochrome b(561) from adrenomedullary chromaffin vesicles, and that Acytb(561)-B is atypical compared to other CYBASC proteins. Haem oxidation-reduction midpoint potential (E(M)) values were found to be fully consistent with ascorbate oxidation activities and Fe(3+)-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b(561) from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem E(M) values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem E(M) values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe(3+)-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem E(M) values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b(561) paralogs exist as homodimers.  相似文献   

6.
Cytochrome b561 transfers electrons across secretory vesicle membranes in order to regenerate intravesicular ascorbic acid. To show that cytosolic ascorbic acid is kinetically competent to function as the external electron donor for this process, electron transfer rates between cytochrome b561 in adrenal medullary chromaffin vesicle membranes and external ascorbate/semidehydroascorbate were measured. The reduction of cytochrome b561 by external ascorbate may be measured by a stopped-flow method. The rate constant is 450 (+/- 190) M-1 s-1 at pH 7.0 and increases slightly with pH. The rate of oxidation of cytochrome b561 by external semidehydroascorbate may be deduced from rates of steady-state electron flow. The rate constant is 1.2 (+/- 0.5) x 10(6) M-1 s-1 at pH 7.0 and decreases strongly with pH. The ratio of the rate constants is consistent with the relative midpoint reduction potentials of cytochrome b561 and ascorbate/semidehydroascorbate. These results suggest that cytosolic ascorbate will reduce cytochrome b561 rapidly enough to keep the cytochrome in a mostly reduced state and maintain the necessary electron flux into vesicles. This supports the concept that cytochrome b561 shuttles electrons from cytosolic ascorbate to intravesicular semidehydroascorbate, thereby ensuring a constant source of reducing equivalents for intravesicular monooxygenases.  相似文献   

7.
Cytochromes b561 (cyts b561) constitute a family of eukaryotic membrane proteins, catalysing ascorbate (Asc)-mediated trans-membrane electron transport, and hence likely involved in Asc regeneration. A class of proteins (DoH-CB) has been identified in plants and animals, containing the cyt b561 electron-transport domain (CB), combined with the catecholamine-binding regulatory domain of dopamine-beta-hydroxylase (DoH). A mammalian DoH-CB protein was previously reported to function as a cell-derived growth factor receptor (SDR2). We have performed an in silico analysis on DoH-CB proteins from Arabidopsis thaliana and demonstrate that structural features of both CB and DoH domains are well conserved. The combination of both domains may have evolved from a functional interaction between a cyt b561 and a DoH-containing protein, illustrating the so-called "Rosetta Stone" evolutionary principle, and this hypothesis is supported by sequence comparisons. DoH-CB proteins form a newly identified group of proteins, likely to play a key role in catecholamine action in plants. It is suggested that these proteins may function as trans-membrane electron shuttles, possibly regulated by catecholamines. The role and action of catecholamines in plants is poorly documented, but it is clear that they are involved in many aspects of growth and development. Whether the DoH-CB proteins functionally interact with Asc, as is the case for cyts b561, remains to be determined.  相似文献   

8.
Cytochrome b(561) is a major transmembrane protein of catecholamine and neuropeptide secretory vesicles in the central and peripheral nervous systems of higher animals. We succeeded in cloning a full-length cDNA encoding planarian cytochrome b(561). The deduced amino acid sequence shows a very similar six transmembrane topology to those of cytochromes b(561) of higher vertebrates and contains both putative ascorbate- and monodehydro ascorbate-binding sites. Among the six totally-conserved His residues of cytochrome b(561) in higher vertebrates, one is substituted with an Asn residue, indicating that His88 and His161 of bovine cytochrome b(561) play roles as heme b ligands at the extravesicular side. Northern- and Western-blot analyses confirmed the expression of the mRNA and protein with the expected sizes in planarians. The distributions of the mRNA and apoprotein were analyzed by in situ hybridization and immunohistochemical staining, respectively, showing two morphologically distinct structures, a pair of ventral nerve cords and the cephalic ganglion cluster in the head region. The present results suggest that the usage of ascorbate to supply electron equivalents to neuroendocrine-specific copper-containing monooxygenases is likely to have originated in organisms with a very simple nervous system.  相似文献   

9.
Cytochrome b(561) in adrenal chromaffin vesicle membranes conveys electron equivalents from extravesicular ascorbate to the intravesicular monodehydroascorbate radical. We conducted a stopped-flow study on the reaction of ascorbate with purified cytochrome b(561) in the detergent-solubilized state for the first time. The time course of the reduction of oxidized cytochrome b(561) with ascorbate could not be fitted with a single exponential but with a linear combination of at least four exponential functions. This result is consistent with the notion that cytochrome b(561) contains two hemes b, each having a distinct redox potential and a function upon reactions with ascorbate and monodehydroascorbate radical. The fastest phase, which was assigned to the first one-electron donation from ascorbate to heme b on the extravesicular side, was further analyzed by transient phase kinetics employing a two-step bi-uni sequential ordered mechanism. The result showed K(s) = 2.2 mM for ascorbate at pH6.0. At a region below pH5.5, there was a significant lag before the reduction of hemes b occurred. This time lag was interpreted as due to a pH-dependent transient state before the first electron transfer to take place. The fastest phase was completely lost by N-carbethoxylation of heme-coordinating histidyl residues (His88 and His161) and Lys85 upon treatment with diethylpyrocarbonate. The presence of ascorbate during the treatment inhibited the N-carbethoxylation of the histidyl residues and, thereby, restored the final reduction level of hemes b. But the reduction rate was still only one-twentieth of the native form. This result suggested an important role of the conserved Lys85 for the interaction with ascorbate.  相似文献   

10.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

11.
Kipp BH  Kelley PM  Njus D 《Biochemistry》2001,40(13):3931-3937
Cytochrome b(561) mediates equilibration of the ascorbate/semidehydroascorbate redox couple across the membranes of secretory vesicles. The cytochrome is reduced by ascorbic acid and oxidized by semidehydroascorbate on either side of the membrane. Treatment with diethyl pyrocarbonate (DEPC) inhibits reduction of the cytochrome by ascorbate, but this activity can be restored by subsequent treatment with hydroxylamine, suggesting the involvement of an essential histidine residue. Moreover, DEPC inactivates cytochrome b(561) more rapidly at alkaline pH, consistent with modification of a histidine residue. DEPC does not affect the absorption spectrum of cytochrome b(561) nor does it change the midpoint reduction potential, confirming that histidine modification does not affect the heme. Ascorbate protects the cytochrome from inactivation by DEPC, indicating that the essential histidine is in the ascorbate-binding site. Further evidence for this is that DEPC treatment inhibits oxidation of the cytochrome by semidehydroascorbate but not by ferricyanide. This supports a reaction mechanism in which ascorbate loses a hydrogen atom by donating a proton to histidine and transferring an electron to the heme.  相似文献   

12.
Griesen D  Su D  Bérczi A  Asard H 《Plant physiology》2004,134(2):726-734
As a free radical scavenger, and cofactor, ascorbate (ASC) is a key player in the regulation of cellular redox processes. It is involved in responses to biotic and abiotic stresses and in the control of enzyme activities and metabolic reactions. Cytochromes (Cyts) b561 catalyze ASC-driven trans-membrane electron transport and contribute to ASC-mediated redox reactions in subcellular compartments. Putative Cyts b561 have been identified in Arabidopsis (ecotype Columbia) on the basis of sequence similarity to their mammalian counterparts. However, little is known about the function or subcellular localization of this unique class of membrane proteins. We have expressed one of the putative Arabidopsis Cyt b561 genes (CYBASC1) in yeast and we demonstrate that this protein encodes an ASC-reducible b-type Cyt with absorbance characteristics similar to that of other members of this family. Several lines of independent evidence demonstrate that CYBASC1 is localized at the plant tonoplast (TO). Isoform-specific antibodies against CYBASC1 indicate that this protein cosediments with the TO marker on sucrose gradients. Moreover, CYBASC1 is strongly enriched in TO-enriched membrane fractions, and TO fractions contain an ASC-reducible b-type Cyt with alpha-band absorbance maximum near 561 nm. The TO ASC-reducible Cyt has a high specific activity, suggesting that it is a major constituent of this membrane. These results provide evidence for the presence of trans-membrane redox components in this membrane type, and they suggest the coupling of cytoplasmic and vacuolar metabolic reactions through ASC-mediated redox activity.  相似文献   

13.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two hemes b with different midpoint potentials (+150 and +60 mV) and participates in transmembrane electron transport from extravesicular ascorbate to an intravesicular monooxygenase, dopamine beta-hydroxylase. Treatment of oxidized cytochrome b(561) with diethylpyrocarbonate caused a downshift of midpoint potential for the lower component, and this shift was prevented by the presence of ascorbate during the treatment. Present EPR analyses showed that, upon the treatment, the g(z) = 3.69 heme species was converted to a non-ascorbate-reducible form, although its g(z)-value showed no appreciable change. The treatment had no effect on the other heme (the g(z) = 3.13 species). Raman data indicated that the two heme b centers adopt a six-coordinated low-spin state, in both the reduced and oxidized forms. There was no significant effect of diethylpyrocarbonate-treatment on the Raman spectra of either form, but the reducibility by ascorbate differed significantly between the two hemes upon the treatment. The addition of ferrocyanide enhanced both the reduction rate and final reduction level of the diethylpyrocarbonate-treated cytochrome b(561) when ascorbate was used as a reductant. This observation suggests that ferrocyanide scavenges monodehydroascorbate radicals produced by the univalent oxidation of ascorbate and, thereby, increases both the reduction rate and the final reduction level of the heme center on the intravesicular side of the diethylpyrocarbonate-treated cytochrome. These results further clarify the physiological role of this heme center as the electron donor to the monodehydroascorbate radical.  相似文献   

14.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. To elucidate the mechanism of the transmembrane electron transfer, effects of the treatment of purified cytochrome b(561) with diethyl pyrocarbonate, a reagent specific for histidyl residues, were examined. We found that when ascorbate was added to the oxidized form of diethyl pyrocarbonate-treated cytochrome b(561), less than half of the heme iron was reduced but with a very slow rate. In contrast, radiolytically generated monodehydroascorbate radical was oxidized rapidly by the reduced form of diethyl pyrocarbonate-modified cytochrome b(561), as observed for untreated cytochrome b(561). These results indicate that the heme center specific for the electron acceptance from ascorbate was perturbed by the modification of amino acid residues nearby. We identified the major modification sites by mass spectrometry as Lys85, His88, and His161, all of which are fully conserved and located on the extravesicular side of cytochrome b(561) in the membranes. We suggest that specific N-carbethoxylation of the histidyl ligands of the heme b at extravesicular side abolishes the electron-accepting ability from ascorbate.  相似文献   

15.
Liu W  da Silva GF  Wu G  Palmer G  Tsai AL  Kulmacz RJ 《Biochemistry》2011,50(15):3149-3160
Several residues in the third extramembrane segment (EM3) of adrenal cytochrome b(561) have been proposed to be involved in this cytochrome's interaction with ascorbate, but there has been no systematic evaluation of residues in the segment. We used alanine scanning mutagenesis to assess the functional and structural roles of the EM3 residues and several adjacent residues (residues 70-85) in the bovine cytochrome. Each alanine mutant was expressed in a bacterial system, solubilized with detergent, and affinity-purified. The recombinant proteins contained approximately two hemes per monomer and, except for R74A, retained basic functionality (≥ 94% reduced by 20 mM ascorbate). Equilibrium spectrophotometric titrations with ascorbate were used to analyze the α-band line shape and amplitude during reduction of the high- and low-potential heme centers (b(H) and b(L), respectively) and the midpoint ascorbate concentrations for the b(H) and b(L) transitions (C(H) and C(L), respectively). Y73A and K85A markedly narrowed the b(H) α-band peak; other mutants had weaker effects or no effect on b(H) or b(L) spectra. Relative changes in C(H) for the mutants were larger than changes in C(L), with 1.5-2.9-fold increases in C(H) for L70A, L71A, Y73A, R74A, N78A, and K85A. The amounts of functional b(H) and b(L) centers in additional Arg74 mutants, assessed by ascorbate titration and EPR spectroscopy, declined in concert in the following order: wild type > R74K > R74Q > R74T and R74Y > R74E. The results of this first comprehensive experimental test of the proposed roles of EM3 residues have identified residues with a direct or indirect impact on ascorbate interactions, on the environment of the b(H) heme center, and on formation of the native b(H)-b(L) unit. Surprisingly, no individual EM3 residue was by itself indispensable for the interaction with ascorbate, and the role of the segment appears to be more subtle than previously thought. These results also support our topological model of the adrenal cytochrome, which positions b(H) near the cytoplasmic side of the membrane.  相似文献   

16.
Cytochromes b(561) are a family of transmembrane proteins found in most eukaryotic cells and contain two haem b prosthetic groups per molecule being coordinated with four His residues from four different transmembrane alpha-helices. Although cytochromes b(561) residing in the chromaffin vesicles has long been known to have a role for a neuroendocrine-specific transmembrane electron transfer from extravesicular ascorbate to intravesicular monodehydroascorbate radical to regenerate ascorbate, newly found members were apparently lacking in the sequence for putative ascorbate-binding site but exhibiting a transmembrane ferrireductase activity. We propose that cytochrome b(561) has a specific mechanism to facilitate the concerted proton/electron transfer from ascorbate by exploiting a cycle of deprotonated and protonated states of the N(delta1) atom of the axial His residue at the extravesicular haem center, as an initial step of the transmembrane electron transfer. This mechanism utilizes the well-known electrochemistry of ascorbate for a biological transmembrane electron transfer and might be operative for other type of electron transfer reactions from organic reductants.  相似文献   

17.
The involvement of cytochrome b561, an integral membrane protein, in electron transfer across chromaffin-vesicle membranes is confirmed by changes in its redox state observed as changes in the absorption spectrum occurring during electron transfer. In ascorbate-loaded chromaffin-vesicle ghosts, cytochrome b561 is nearly completely reduced and exhibits an absorption maximum at 561 nm. When ferricyanide is added to a suspension of these ghosts, the cytochrome becomes oxidized as indicated by the disappearance of the 561 nm absorption. If a small amount of ferricyanide is added, it becomes completely reduced by electron transfer from intravesicular ascorbate. When this happens, cytochrome b561 returns to its reduced state. If an excess of ferricyanide is added, the intravesicular ascorbate becomes exhausted and the cytochrome b561 remains oxidized. The spectrum of these absorbance changes correlates with the difference spectrum (reduced-oxidized) of cytochrome b561. Cytochrome b561 becomes transiently oxidized when ascorbate oxidase is added to a suspension of ascorbate-loaded ghosts. Since dehydroascorbate does not oxidize cytochrome b561, it is likely that oxidation is caused by semidehydroascorbate generated by ascorbate oxidase acting on free ascorbate. This suggests that cytochrome b561 can reduce semidehydroascorbate and supports the hypothesis that the function of cytochrome b561 in vivo is to transfer electrons into chromaffin vesicles to reduce internal semidehydroascorbate to ascorbate.  相似文献   

18.
Cytochrome b561 catalyzes transmembrane electron transfer   总被引:1,自引:0,他引:1  
Purified cytochrome b561 from bovine adrenal medulla chromaffin vesicles has been reconstituted into phosphatidylcholine vesicles by a detergent-dialysis method. When the reconstituted cytochrome-containing vesicles were preloaded with ascorbic acid and cytochrome c was added to the external medium, the internal ascorbic acid was able to reduce the external cytochrome c. This reduction of cytochrome c was dependent on the presence of cytochrome b561 in the membrane and was not due to leakage of ascorbate from the vesicles. These results demonstrate that cytochrome b561 catalyzes a transmembrane electron transfer.  相似文献   

19.
Cytochrome b561 from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups. We verified that purified cytochrome b561 can donate electron equivalents directly to cytochrome c. The purified cytochrome b561 was successfully reconstituted into cholesterol-phosphatidylcholine-phosphatidylglycerol vesicles by a detergent-dialysis and extrusion method. When ascorbate-loaded vesicles with cytochrome b561 were mixed with ferricytochrome c, the intravesicular ascorbate was able to reduce external thiazole blue or cytochrome c. The reduction of thiazole blue or cytochrome c was dependent on the presence of cytochrome b561 in the vesicle membranes. Pre-treatment of cytochrome b561 with diethylpyrocarbonate suppressed the reduction of extravesicular cytochrome c significantly, confirming that the reduction was not due to leakage of ascorbate from the vesicles. The topology of the reconstituted cytochrome b561 in the vesicle membranes was examined by treatment with trypsin followed by SDS-PAGE and MALDI-TOF-MS analyses. Only one major cleavage site at Lys191 was identified, indicating that cytochrome b561 was reconstituted into the membranes in an inside-out orientation irrespective of the modification with diethylpyrocarbonate. The addition of a soluble form of dopamine beta-hydroxylase to the external medium resulted in the successful reconstitution of the hydroxylation activity towards tyramine, an analogue of dopamine, suggesting that a direct electron transfer via complex formation occurred. This activity was enhanced significantly upon the addition of ferricyanide as a mediator between cytochrome b561 and dopamine beta-hydroxylase.  相似文献   

20.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号