首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

5.
Lycopene, which is the predominant carotenoid in tomatoes and tomato-based foods, may protect humans against various cancers. Effects of lycopene on the adhesion, invasion, migration, and growth of the SK-Hep1 human hepatoma cell line were investigated. Lycopene inhibited cell growth in dose-dependent manners, with growth inhibition rates of 5% and 40% at 0.1 microM and 50 microM lycopene, respectively, after 24 hrs of incubation. Similarly, after 48 hrs of incubation, lycopene at 5 microM and 10 microM decreased the cell numbers by 30% and 40%, respectively. Lycopene decreased the gelatinolytic activities of both matrix metalloproteinase (MMP)-2 and MMP-9, which were secreted from the SK-Hep1 cells. Incubation of SK-Hep1 cells with 110 microM of lycopene for 60 mins significantly inhibited cell adhesion to the Matrigel-coated substrate in a concentration-dependent manner. To study invasion, SK-Hep1 cells were grown either on Matrigel-coated Transwell membranes or in 24-well plates. The cells were treated sequentially for 24 hrs with lycopene before the start of the invasion assays. Cell growth and death were assessed under the same conditions. The invasion of SK-Hep1 cells treated with lycopene was significantly reduced to 28.3% and 61.9% of the control levels at 5 microM and 10 microM lycopene, respectively (P < 0.05). In the migration assay, lycopene-treated cells showed lower levels of migration than untreated cells. These results demonstrate the antimetastatic properties of lycopene in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells.  相似文献   

6.
Cell migration and proteolysis are two essential processes during tumor invasion and metastasis. Matrix metalloproteinase (MMP)-2 (type IV collagenase; gelatinase A), is implicated in tumor metastasis as well as in primary tumor growth. The Rho family of small GTPases regulates the dynamics of actin cytoskeleton associated with cell motility. In this report, we provide evidence that Rac1, one member of Rho-related small GTPases, is a mediator of MMP-2 activation in HT1080 fibrosarcoma cells cultured in three-dimensional collagen gel (3D-col) and that MMP-2 activation is required for Rac1-promoted cell invasion through collagen barrier. Stable expression of dominant negative (Rac1V12N17) and constitutively active Rac1 (Rac1V12), respectively, in HT1080 cells demonstrates that Rac1 promoted cell invasiveness across type I collagen and collagen-dependent MMP-2 activation. Active Rac1 is sufficient to induce MMP-2 activation in cells cultured in fibrin gel, an extracellular matrix component that does not support MMP-2 activation. The Rac1-dependent MMP-2 activation occurred in a cell-associated fashion and required MMP activities. Because the cell membrane-mediated MMP-2 activation requires MT1-MMP and low amount of issue inhibitor of matrix metalloproteinase-2 (TIMP-2), their expression was examined. Rac1 modulated MT1-MMP mRNA level and the accumulation of a 43-kDa form of MT1-MMP protein, in correlation with MMP-2 activation profile. However, TIMP-2 expression was independent of Rac1 activity. The coordinate modulation of MMP-2 activity and MT1-MMP expression/processing by Rac1 is consistent with cell collagenolytic activity. The C-terminal hemopexin-like domain of MMP-2, which interferes with the cell membrane activation of MMP-2, reduced Rac1-promoted cell invasiveness as monitored by collagen invasion assay. These results suggest that collagen-dependent MMP-2 activation and MT1-MMP expression/processing contribute to Rac-promoted tumor cell invasion through interstitial collagen barrier.  相似文献   

7.
Activation of matrix metalloproteinase 2 (MMP-2) has been shown to play a significant role in the behavior of cancer cells, affecting both migration and invasion. The activation process requires multimolecular complex formation involving pro-MMP-2, membrane type 1-MMP (MT1-MMP), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because calcium is an important regulator of keratinocyte function, we evaluated the effect of calcium on MMP regulation in an oral squamous cell carcinoma line (SCC25). Increasing extracellular calcium (0.09-1.2 mm) resulted in a dose-dependent increase in MT1-MMP-dependent pro-MMP-2 activation. Despite the requirement for MT1-MMP in the activation process, no changes in MT1-MMP expression, cell surface localization, or endocytosis were apparent. However, increased generation of the catalytically inactive 43-kDa MT1-MMP autolysis product and decline in the TIMP-2 levels in conditioned media were observed. The decrease in TIMP-2 levels in the conditioned media was prevented by a broad spectrum MMP inhibitor, suggesting that calcium promotes recruitment of TIMP-2 to MT1-MMP on the cell surface. Despite the decline in soluble TIMP-2, no accumulation of TIMP-2 in cell lysates was seen. Blocking TIMP-2 degradation with bafilomycin A1 significantly increased cell-associated TIMP-2 levels in the presence of high calcium. These data suggest that the decline in TIMP-2 is because of increased calcium-mediated MT1-MMP-dependent degradation of TIMP-2. In functional studies, increasing calcium enhanced MMP-dependent cellular migration on laminin-5-rich matrix using an in vitro colony dispersion assay. Taken together, these results suggest that changes in extracellular calcium can regulate post-translational MMP dynamics and thus affect the cellular behavior of oral squamous cell carcinoma.  相似文献   

8.
We designed and synthesized a celecoxib derivative UTX-121 to enhance its anti-tumor activity. Similar to celecoxib, this compound could also inhibit matrix metalloproteinase (MMP)-9 activity. In addition, UTX-121 suppressed membrane-type 1 MMP (MT1-MMP)-mediated pro-MMP-2 activation by disturbing the cell surface expression of MT1-MMP. UTX-121 also impeded the glycosylation of cell surface proteins, resulting in the suppression of cell attachment to fibronectin. This inhibition by UTX-121 caused the reduction of fibronectin-stimulated focal adhesion kinase activation, Akt activation, and cell migration. Consequently, UTX-121 treatment significantly inhibited fibronectin-induced HT1080 cell invasion into the Matrigel. UTX-121 may be a potent lead compound that can be used to develop a novel anti-tumor drug.  相似文献   

9.
10.
Laminin-5 (Ln-5) is an extracellular matrix substrate for cell adhesion and migration, which is found in many epithelial basement membranes. Mechanisms eliciting migration on Ln-5 need to be elucidated because of their relevance to tissue remodeling and cancer metastasis. We showed that exogenous addition of activated matrix metalloprotease (MMP) 2 stimulates migration onto Ln-5 in breast epithelial cells via cleavage of the gamma2 subunit. To investigate the biological scope of this proteolytic mechanism, we tested a panel of cells, including colon and breast carcinomas, hepatomas, and immortalized hepatocytes, selected because they migrated or scattered constitutively in the presence of Ln-5. We found that constitutive migration was inhibited by BB94 or TIMPs, known inhibitors of MMPs. Limited profiling by gelatin zymography and Western blotting indicated that the ability to constitutively migrate on Ln-5 correlated with expression of plasma membrane bound MT1-MMP metalloprotease, rather than secretion of MMP2, since MMP2 was not produced by three cell lines (one breast and two colon carcinomas) that constitutively migrated on Ln-5. Moreover, migration on Ln-5 was reduced by MT1-MMP antisense oligonucleotides both in MMP2+ and MMP2- cell lines. MT1-MMP directly cleaved Ln-5, with a pattern similar to that of MMP2. The hemopexin-like domain of MMP2, which interferes with MMP2 activation, reduced Ln-5 migration in MT1-MMP+, MMP2+ cells, but not in MT1-MMP+, MMP2- cells. These results suggest a model whereby expression of MT1-MMP is the primary trigger for migration over Ln-5, whereas MMP2, which is activated by MT1-MMP, may play an ancillary role, perhaps by amplifying the MT1-MMP effects. Codistribution of MT1-MMP with Ln-5 in colon and breast cancer tissue specimens suggested a role for this mechanism in invasion. Thus, Ln-5 cleavage by MMPs may be a widespread mechanism that triggers migration in cells contacting epithelial basement membranes.  相似文献   

11.
Lee KW  Kang NJ  Kim JH  Lee KM  Lee DE  Hur HJ  Lee HJ 《Genes & nutrition》2008,2(4):319-322
Numerous studies have shown that the levels of matrix metalloproteinase (MMP)-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. This study investigated the effects of caffeic acid phenethyl ester (CAPE), a chemopreventive phytochemical derived from honeybee propolis, on the invasive phenotype of SK-Hep1 human hepatocellular carcinoma cells (SK-Hep1 cells). CAPE effectively suppressed SK-Hep1 cell invasion in a dose-dependent manner. The constitutive expression of MMP-2 and MMP-9 in SK-Hep1 cells was almost completely abolished by treatment with 12.5 muM CAPE. CAPE also significantly inhibited nuclear factor kappa B (NF-kappaB) DNA-binding activity in SK-Hep1 cells. These results taken together suggest that CAPE exerts antimetastatic potential through inhibition of MMP-2 and MMP-9 expression, possibly by targeting NF-kappaB in hepatocellular carcinoma.  相似文献   

12.
13.
Migration of cardiac fibroblasts is implicated in infarct healing and ventricular remodeling. Activation of matrix metalloproteinases induced by three-dimensional type I collagen, the principal component of the myocardial interstitium, is hypothesized to be essential for this migration. By utilizing primary cultures of cardiac fibroblasts and collagen lattice models, we demonstrated that type I collagen induced MMP-2 activation, and cells undergoing a change from isometric tension to mechanical unloading were associated with increased levels of total and active MMP-2 species. The collagen-induced MMP-2 activation coincided with up-regulated cellular levels of both membrane type 1-matrix metalloproteinase (MT1-MMP) and TIMP-2. A fraction of cellular membrane prepared from cells embedded in the collagen lattice containing active MT1-MMP and TIMP-2 was capable of activating pro-MMP-2, and exogenous TIMP-2 had a biphasic effect on this membrane-mediated MMP-2 activation. Interestingly, the presence of 43-kDa MT1-MMP species in a fraction of intracellular soluble proteins prepared from monolayer cells but not cells embedded in the lattices indicates that MT1-MMP metabolizes differently under the two different culture conditions. Treatment of cells embedded in the lattice with furin inhibitor attenuated pro-MT1-MMP processing and MMP-2 activation and impeded cell migration and invasion. These results suggest that the migration and invasion of cardiac fibroblasts is furin-dependent and that the active species of MT1-MMP and MMP-2 may be involved in both events.  相似文献   

14.
The role of membrane-type (MT) 2-matrix metalloproteinase (MMP) in the cellular activation of MMP-2 and the tissue inhibitor of matrix metalloproteinase (TIMP) requirements for this process have not been clearly established. To address these issues a TIMP-2-free cell line derived from a Timp2-/- mouse was transfected for stable cell surface expression of hMT2-MMP. Untransfected cells did not activate endogenous or exogenous TIMP-2-free MMP-2 unless both TIMP-2 and concanavalin A (ConA) were added. Transfected cells expressing hMT2-MMP efficiently activated both endogenous and exogenous MMP-2 (within 4 h) via the 68-kDa intermediate in the absence of TIMP-2 and ConA. In contrast, activation of MMP-2 by Timp2-/- cells expressing recombinant hMT1-MMP occurred more slowly (12 h) and required the addition of 0.3-27 nm TIMP-2. Addition of TIMP-2 or TIMP-4 did not enhance MMP-2 activation by MT2-MMP at any concentration tested; furthermore, activation was inhibited by both TIMPs at concentrations >9 nm, consistent with the similar association rate constants (k(on)) calculated for the binding of TIMP-4 and TIMP-2 to MT2-MMP (3.56 x 10(5) m(-1) s(-1) and 6.52 x 10(5) m(-1) s(-1), respectively). MT2-MMP-mediated activation involved cell surface association of the MMP-2 in a hemopexin carboxyl-terminal domain (C domain)-dependent manner: Exogenous MMP-2 hemopexin C domain blocked activation, and cells expressing hMT2-MMP did not bind or activate a truncated form of MMP-2 lacking the hemopexin C domain. These studies demonstrate the existence of an alternative TIMP-2-independent pathway for MMP-2 activation involving MT2-MMP, which may be important in mediating MMP-2 activation in specific tissues or pathologies where MT2-MMP is expressed.  相似文献   

15.
The laver (Porphyra tenera), red seaweed, has been reported to have anticancer activity, but little is known about its molecular mechanisms of action. The objective of this study was to determine the effects of laver extract on cancer cell proliferation, invasion, and metastasis in SK-Hep1 cells using migration and invasion assays. We also investigated the relationship of MMP-2/-9 and TIMP-1/-2 expression at both the protein and gene level in SK-Hep1 human hepatoma carcinoma cells after laver extract treatment. Laver extract inhibited cancer cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, laver extract showed 19.6 and 27.2% inhibition of cancer cell at 200 and 400 μg/mL, respectively, compared to the control. The mRNA levels of both MMP-2 and MMP-9 were down-regulated by laver extract treatment in a dose-dependent manner. Laver extract, at 400 μg/mL, was inhibited by MMP-2 and MMP-9 expressions by 70.1 and 77.0%, respectively. An inverse relationship in the mRNA contents of MMP-2/-9 and TIMP-1/-2 expressions in SK-Hep1 cells was found by laver extract treatment. Our results demonstrate antimetastatic properties of laver extract in inhibiting the adhesion, invasion, and migration of SK-Hep1 human hepatoma cancer cells.  相似文献   

16.
In this study, we identified differential expression of immunoreactive matrix metalloproteinase 2 (MMP2)/gelatinase A, membrane-anchored MT1-MMP/MMP14, and human relaxin-2 (RLN2) in human benign and malignant thyroid tissues. MMP2 and MT1-MMP were detected in the majority of thyroid cancer tissues and colocalized with RLN2-positive cells. MMP2 was mostly absent in goiter tissues and, similar to RLN2, may serve as a marker for thyroid cancer. MMP2 and MT1-MMP were identified as novel RLN2 targets. RLN2 caused a significant downregulation of tissue inhibitor of MMP (TIMP) 3 protein levels but did not change the expression levels of MMP13, and TIMP1, TIMP2, and TIMP4 in human thyroid carcinoma cells. RLN2 failed to affect the expression of MMP1, 3, 8, and 9 in the thyroid carcinoma cells investigated. Stable RLN2 transfectants secreted enhanced levels of bioactive MMP2 which contributed to the increased collagenolytic activity and in vitro invasiveness into collagen matrix by human thyroid cancer cells. Three-dimensional reconstitution of confocal fluorescent microscopy images revealed larger-sized invadopodia, with intense MT1-MMP accumulation at the leading migrating edge in RLN2 transfectants when compared with enhanced green fluorescent protein clones. In RLN2 transfectants actin stress fibers contributed to pseudopodia formation. In conclusion, enhanced tumor cell invasion by RLN2 involves the formation of MT1-MMP-enriched invadopodia that lead to increased collagenolytic cell invasion by human thyroid cancer cells.  相似文献   

17.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

18.
During tissue-invasive events, migrating cells penetrate type I collagen-rich interstitial tissues by mobilizing undefined proteolytic enzymes. To screen for members of the matrix metalloproteinase (MMP) family that mediate collagen-invasive activity, an in vitro model system was developed wherein MDCK cells were stably transfected to overexpress each of ten different MMPs that have been linked to matrix remodeling states. MDCK cells were then stimulated with scatter factor/hepatocyte growth factor (SF/HGF) to initiate invasion and tubulogenesis atop either type I collagen or interstitial stroma to determine the ability of MMPs to accelerate, modify, or disrupt morphogenic responses. Neither secreted collagenases (MMP-1 and MMP-13), gelatinases (gelatinase A or B), stromelysins (MMP-3 and MMP-11), or matrilysin (MMP-7) affected SF/HGF-induced responses. By contrast, the membrane-anchored metalloproteinases, membrane-type 1 MMP, membrane-type 2 MMP, and membrane-type 3 MMP (MT1-, MT2-, and MT3-MMP) each modified the morphogenic program. Of the three MT-MMPs tested, only MT1-MMP and MT2-MMP were able to directly confer invasion-incompetent cells with the ability to penetrate type I collagen matrices. MT-MMP-dependent invasion proceeded independently of proMMP-2 activation, but required the enzymes to be membrane-anchored to the cell surface. These findings demonstrate that MT-MMP-expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.  相似文献   

19.
Takino T  Nagao R  Manabe R  Domoto T  Sekiguchi K  Sato H 《FEBS letters》2011,585(21):3378-3384
Fibronectin (FN) matrix assembly is an essential process in normal vertebrate development, which is frequently lost in tumor cells. Here we show that membrane-type 1 matrix metalloproteinase (MT1-MMP) regulates FN matrix assembly. MT1-MMP knockdown induced FN assembly in breast carcinoma cells. Ectopic expression of MT1-MMP reduced specifically the assembled FN matrix level without affecting whole FN production in fibroblasts. Treatment of fibrosarcoma HT1080 cells with dexamethasone (DEX) enhanced FN synthesis, resulting in short fibrils but not dense matrix formation. Combined treatment of DEX and MT1-MMP inhibitor accelerated FN matrix assembly, which mediated cellular adhesion and reduced cell migration and invasion. These results indicate that MT1-MMP stimulates cell migration and invasion by negatively regulating FN assembly.  相似文献   

20.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号