首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.  相似文献   

2.
BackgroundAlthough Southeast Asia is one of the most leptospirosis afflicted regions, little is known about the diversity and molecular epidemiology of the causative agents of this widespread and emerging zoonotic disease.Methodology/Principal findingsWe used whole genome sequencing to examine genetic variation in 75 Leptospira strains isolated from patients in the Lao PDR (Laos) between 2006 and 2017.Eleven serogroups from 4 Leptospira species and 43 cgMLST-defined clonal groups (CGs) were identified. The most prevalent CG was CG272 (n = 18, 26.8%), composed of L. interrogans serogroup Autumnalis isolates. This genotype was recovered throughout the 12-year period and was associated with deaths, and with a large outbreak in neighbouring Thailand. Genome analysis reveals that the CG272 strains form a highly clonal group of strains that have, for yet unknown reasons, recently spread in Laos and Thailand. Additionally, accessory genes clearly discriminate CG272 strains from the other Leptospira strains.Conclusions/SignificanceThe present study reveals a high diversity of Leptospira genotypes in Laos, thus extending our current knowledge of the pan- and core-genomes of these life-threatening pathogens. Our results demonstrate that the CG272 strains belong to a unique clonal group, which probably evolved through clonal expansion following niche adaptation. Additional epidemiological studies are required to better evaluate the spread of this genotype in Southeast Asia. To further investigate the key factors driving the virulence and spread of these pathogens, more intense genomic surveillance is needed, combining detailed clinical and epidemiological data.  相似文献   

3.
To assess the molecular characterization of disseminated vancomycin-resistant enterococci (VRE) in the intensive care units, 546 enterococci isolates were collected from different clinical samples in a prospective observational study. The results showed that a total number of 33 isolates (6 %) were resistant to vancomycin. Most of the VRE isolates 11 (34 %) were isolated from intensive care units (ICUs). 18 (55 %) VRE isolates were obtained from urinary tract infections. The results from pulsed-field gel electrophoresis showed five common types (CT) and 13 single types (ST) among the VRE isolates. The analysis showed two and one major CTs and ST among the ICUs isolates, respectively. Tn1546 transposon was analyzed using ClaI-digested long PCR (L-PCR) RFLP followed by sequencing. The results showed the presence of two different lineages of transposon among the two clonal groups. Lineage 1 with the arrangement of Tn1546 prototype in the first clonal group and the second lineage with 13 kb harboring two insertion sequences, IS1216 V and IS1542. DNA hybridization showed that vanA gene in all VRE isolates, with an exception of one isolate, was present in the same location on the genome. Overall, the results suggest that a few VRE clonal types were disseminated in ICUs in hospitals in Iran which were able to transfer their vanA with high conjugation frequency.  相似文献   

4.
【背景】多杀性巴氏杆菌可导致猪肺疫、牛出血性败血症和兔出血性败血症等多种疾病,严重威胁多种动物畜牧养殖业的健康发展。【目的】重庆某兔场送检一批病死兔,为研究其病原和治疗方法,对病原进行了微生物分离和全基因组测序分析。【方法】从2022年重庆某兔场送检兔病料中进行细菌分离纯化、生化试验、16S rRNA基因鉴定、荚膜血清型分型、药敏试验和毒力基因检测,同时通过全基因组测序结果进行毒力、耐药基因注释和遗传进化等分子生物学信息分析。【结果】该菌为兔源A:ST74多杀性巴氏杆菌,命名为LXSS001,基因组序列上传到NCBI数据库(登录号为CP119523.1),药敏试验显示该菌对四环素、杆菌肽、复方新诺明和磺胺异恶唑耐药,对头孢噻肟、头孢哌酮和丁胺卡那等药物敏感。全基因组长度为2 480 671 bp,并注释到了58个毒力基因和9类药物的靶向抗药基因。通过联合建树表明其与3480株一致性最高。【结论】本研究完成了一株A型多杀性巴氏杆菌的分离鉴定和全基因组测序,并揭示了其与国内外其他分离株的进化关系,为多杀性巴氏杆菌的后续研究提供了参考依据。  相似文献   

5.
Clostridium difficile PCR ribotype 106 (also identified as restriction endonuclease analysis [REA] group DH) recently emerged as the most common strain causing C. difficile infection (CDI) among US adults. We previously identified this strain predominating our pediatric cohort. Pediatric clinical CDI isolates previously characterized by REA underwent antibiotic resistance testing and whole genome sequencing. Of 134 isolates collected from children, 31 (23%) were REA group DH. We performed a comparative genomics analysis to identify DH-associated accessory genes. We identified five DH-associated genes that are associated with virulence in other bacterial species but not previously known to contribute to CDI. These genes are associated with intestinal mucosal adhesion (collagen-binding surface protein), sporulation (sporulation integral membrane protein YtvI), and protection from oxidative stress and foreign DNA (DNA phosphorothioation-dependent restriction proteins, sulfurtransferase, and DNA sulfur modification proteins). The association of these genes was validated in a cohort of 623 publicly available C. difficile sequences, 10 (1.6%) of which were monophyletic to REA group DH through in silico multilocus sequence typing and core genome phylogenetic analysis. Further investigation is required to determine the contribution of these genes to the emergence and virulence of this epidemic strain.  相似文献   

6.
Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology.  相似文献   

7.
Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.  相似文献   

8.
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections.  相似文献   

9.
Asexual bacterial populations inevitably consist of an assemblage of distinct clonal lineages. However, bacterial populations are not entirely asexual since recombinational exchanges occur, mobilizing small genome segments among lineages and species. The relative contribution of recombination, as opposed to de novo mutation, in the generation of new bacterial genotypes varies among bacterial populations and, as this contribution increases, the clonality of a given population decreases. In consequence, a spectrum of possible population structures exists, with few bacterial species occupying the extremes of highly clonal and completely non-clonal, most containing both clonal and non-clonal elements. The analysis of collections of bacterial isolates, which accurately represent the natural population, by nucleotide sequence determination of multiple housekeeping loci provides data that can be used both to investigate the population structure of bacterial pathogens and for the molecular characterization of bacterial isolates. Understanding the population structure of a given pathogen is important since it impacts on the questions that can be addressed by, and the methods and samples required for, effective molecular epidemiological studies.  相似文献   

10.
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.  相似文献   

11.
To employ 16S rDNA PCR and automated sequencing techniques to identify a collection of bacterial veterinary pathogens from avian, equine, canine and ovine sources, that have proven difficult to identify, employing conventional cultural techniques. Universal or “broad-range” eubacterial PCR was performed on a collection of 46 difficult-to-identify bacterial isolates originating from clinical veterinary specimens. 16S rDNA PCR was performed using two sets of universal primers to successfully generate a composite amplicon of 1,068 bp, which was sequenced to obtain each isolate’s identity. Sequence analysis was able to identify all isolates examined with relative ease. Where the use of molecular identification methods is justified, such as in outbreak control or bioterrorism in animal health, employment of partial 16S rDNA PCR and sequencing employing universal or “broad-range” 16S rDNA, provides a valuable and reliable method of identification of such pathogens.  相似文献   

12.
《Genomics》2021,113(6):4098-4108
Pukzing cave, the largest cave of Mizoram, India was explored for bacterial diversity. Culture dependent method revealed 235 bacterial isolates using three different treatments. Identity of the microbial species was confirmed by 16S rDNA sequencing. The highest bacterial population was recovered from heat treatment (n = 97;41.2%) followed by normal (n = 79;33.6%) and cold treatment (n = 59;25.1%) indicating dominance of moderate thermophiles. Antimicrobial potential of isolates showed 20.4% isolates having antimicrobial ability against tested pathogens. Amplicon sequencing of PKSI, PKSII and NRP specific genes revealed presence of AMP genes in the microbial population. Six microbial pathogens were selected for screening as they are well known for different disease cause organism in various fields such as agriculture and human health. Cave environment harbors unique microbial flora and hypervariable region V4 is more informative. Higher activity of AMP assay against these microbes indicates that cave microbial communities could be potential source of future genomic resources.  相似文献   

13.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

14.

Background

The control of Clostridium difficile infection is a major international healthcare priority, hindered by a limited understanding of transmission epidemiology for these bacteria. However, transmission studies of bacterial pathogens are rapidly being transformed by the advent of next generation sequencing.

Results

Here we sequence whole C. difficile genomes from 486 cases arising over four years in Oxfordshire. We show that we can estimate the times back to common ancestors of bacterial lineages with sufficient resolution to distinguish whether direct transmission is plausible or not. Time depths were inferred using a within-host evolutionary rate that we estimated at 1.4 mutations per genome per year based on serially isolated genomes. The subset of plausible transmissions was found to be highly associated with pairs of patients sharing time and space in hospital. Conversely, the large majority of pairs of genomes matched by conventional typing and isolated from patients within a month of each other were too distantly related to be direct transmissions.

Conclusions

Our results confirm that nosocomial transmission between symptomatic C. difficile cases contributes far less to current rates of infection than has been widely assumed, which clarifies the importance of future research into other transmission routes, such as from asymptomatic carriers. With the costs of DNA sequencing rapidly falling and its use becoming more and more widespread, genomics will revolutionize our understanding of the transmission of bacterial pathogens.  相似文献   

15.
Phages are a primary driving force behind the evolution of bacterial pathogens by transferring a variety of virulence genes into their hosts. Similar to other bacterial genomes, the Salmonella enterica serovar Enteritidis LK5 genome contains several regions that are homologous to phages. Although genomic analysis demonstrated the presence of prophages, it was unable to confirm which phage elements within the genome were viable. Genetic markers were used to tag one of the prophages in the genome to allow monitoring of phage induction. Commonly used laboratory strains of Salmonella were resistant to phage infection, and therefore a rapid screen was developed to identify susceptible hosts. This approach showed that a genetically tagged prophage, ELPhiS (Enteritidis lysogenic phage S), was capable of infecting Salmonella serovars that are diverse in host range and virulence and has the potential to laterally transfer genes between these serovars via lysogenic conversion. The rapid screen approach is adaptable to any system with a large collection of isolates and may be used to test the viability of prophages found by sequencing the genomes of various bacterial pathogens.  相似文献   

16.
《Genomics》2022,114(3):110368
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.  相似文献   

17.

Purpose of Review

Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens.

Recent Findings

Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host.

Summary

Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.
  相似文献   

18.
19.
Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also, the significance of different virulence genes, mainly adhesins, for the development of infective endocarditis was investigated.DNA microarray technology was used to analyze 134 S. aureus isolates, all methicillin-susceptible, derived from three groups of clinically well-characterized patients: nasal carriers (n=46), bacteremia (n=55), and bacteremia with infective endocarditis (n=33).Invasive isolates were dominant in four of the major clonal complexes: 5, 8, 15, and 25. Of the 170 virulence genes examined, those encoding accessory gene regulator group II (agr II), capsule polysaccharide serotype 5 (cap5), and adhesins such as S. aureus surface protein G (sasG) and fibronectin-binding protein B (fnbB) were found to be associated with invasive disease. The same was shown for the leukocidin genes lukD/lukE, as well as the genes encoding serine protease A and B (splA/splB), staphylococcal complement inhibitor (scn) and the staphylococcal exotoxin-like protein (setC or selX). In addition, there was a trend of higher prevalence of certain genes or gene clusters (sasG, agr II, cap5) among isolates causing infective endocarditis compared to other invasive isolates. In most cases, the presence of virulence genes was linked to clonal complex affiliation.In conclusion, certain S. aureus clonal lineages harboring specific sets of virulence genes seem to be more successful in causing invasive disease.  相似文献   

20.
Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号