首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effects of agonist and antagonist muscle fatigue on the performance of rapid, self-terminating movements. Six subjects performed rapid, consecutive elbow flexion and extension movements between two targets prior to and after fatiguing either the elbow flexor or elbow extensor muscles. The experiments demonstrated consistent results. Agonist muscle fatigue was associated with a decrease in peak velocity and peak deceleration, while a decrease in peak acceleration was particularly prominent. Antagonist muscle fatigue, however, was associated with a decrease in peak deceleration, while a decrease in both the peak velocity and peak acceleration was modest and, in some tests, non-significant. The relative acceleration time (i.e. acceleration time as a proportion of the total movement time) increased when agonists were fatigued, but decreased when antagonists were fatigued. Taken together, these results emphasize the mechanical roles of the agonist and antagonist muscles; namely, the fatigue of each muscle group particularly affected the movement phase in which that group accelerated a limb, while changes of the movement kinematics pattern provided more time for action of the fatigued muscles. In addition, the results presented suggest that agonist muscle fatigue affects movement velocity more than antagonist muscle fatigue, even in movements that demonstrate prominently both mechanical and myoelectric activity of the antagonist muscles, such as rapid, self-terminating movements. Accepted: 11 February 1997  相似文献   

2.
The activity of certain muscles that cross the elbow joint complex (EJC) are affected by forearm position and forearm movement during elbow flexion/extension. To investigate whether these changes are based on the musculoskeletal geometry of the joint, a three-dimensional musculotendinoskeletal computer model of the EJC was used to estimate individual muscle activity in multi-degree-of-freedom (df) rapid (ballistic) elbow movements. It is hypothesized that this model could reproduce the major features of elbow muscle activity during multi-df elbow movements using dynamic optimal control theory, given a minimum-time performance criterion. Results from the model are presented and verified with experimental kinematic and electromyographic data from movements that involved both one-df elbow flexion/extension and two-df flexion/extension with forearm pronation/supination. The model demonstrated how the activity of particular muscles is affected by both forearm position and movement, as measured in these experiments and as previously reported by others. These changes were most evident in the flexor muscles and least evident in the extensor muscles. The model also indicated that, for specific one- and two-df movements, activating a muscle that is antagonistic or noncontributory to the movement could reduce the movement time. The major features of muscle activity in multi-df elbow movements appear to be highly dependent on the joint's musculoskeletal geometry and are not strictly based on neural influences or neuroanatomical substrates. Received: 9 May 1997 / Accepted in revised form: 8 December 1998  相似文献   

3.
In tests on humans, we recorded EMG activity from the muscles flexing and extending the forearm and shoulder in the course of realization of sequential single-joint and simultaneous two-joint movements of the upper limb. As was shown, the shoulder muscles m. biceps brachii and m. triceps brachii are involved in flexion/extension of both elbow and shoulder joints. Central commands sent to the above muscles in the course of a two-joint movement could be considered a superposition of the central commands coming to the same muscles in realization of the corresponding sequential single-joint movements with the same changes in the angles of the elbow and shoulder joints. External loadings applied in the direction of extension of the elbow and shoulder joints induced, in general, similar changes in coordination of the activity of muscles moving the forearm and shoulder under conditions of both single-joint and two-joint movements. These facts allow us to suppose that coordination of the muscle activity in two-joint movements depends to a greater extent on the forces influencing limb links than on the mode of realization of the movements (two sequential single-joint movements vs a two-joint movement corresponding to the above motor events).  相似文献   

4.
We have tested the hypothesis that agonist and antagonist muscle fatigue could affect the final position of rapid, discrete movements. Six subjects performed consecutive elbow flexion and extension movements between two targets, with their eyes closed prior to, and after fatiguing the elbow extensor muscles. The results demonstrate that elbow extension movements performed in the post-test period systematically undershot the final position as compared to pre-test movements. However, attainment of the aimed final position in elbow flexion movements was unaffected by fatiguing of the extensor muscles. Undershoot of the final position obtained in extension movements was associated with agonist muscle fatigue, a result that was expected from the point of view of current motor control theories, and that could be explained by a reduced ability of the shortening muscle to exert force. On the other hand, the absence of the expected overshoot of the final position when the antagonist is fatigued, indicates the involvement of various reflex and/or central mechanisms operating around the stretched muscle that could contribute to returning the limb to the standard final position after a brief prominent overshoot.  相似文献   

5.
Relations between the kinematic parameters of slow (non-ballistic) targeted extension movements in the elbow joint of humans and characteristics of the movement-related EMG activity in the two heads of the m. triceps brachii were analyzed. Test movements were performed under conditions of application of non-inertional external loadings directed toward flexion. It was shown that the movement-related EMG activity of the elbow extensors, similarly to what was observed in the flexors at flexion movements with the same parameters, demonstrates a complex structure and includes dynamic and stationary phases. In the former phase, in turn, initial and main components can be differentiated. The rising edge and decay of the main component of the dynamic extensor EMG phase could be approximated by exponential functions; this component was never split into a few subcomponents. Dependences between the amplitudes of m. triceps brachii EMG phases and the amplitude of the movement (or external loading) were, as a rule, nonlinear but monotonic. An increase in the test movement velocity led to an increase in the rate of rise of the rising edge of the dynamic EMG phase, while an increment in the amplitude was less significant. Under the used test conditions, the activity of the elbow extensors was usually accompanied by some coactivation of the antagonists (m. biceps brachii). It is concluded that motor commands coming to the elbow extensors at performance of the extension test movements differ from motor commands to the flexors at analogous flexion test movements by a simpler structure and more tonic pattern. Biomechanical specificities of fixation of the mentioned muscle groups to the arm bones (stability of the moment for application of the extensor force under conditions of changing the joint angle vs variable moment of the flexor force) are considered one of the main reasons for such specificity of the patterns of the extensor and flexor motor commands.  相似文献   

6.
In 14 healthy persons, we studied movements of the forearm with its positioning on a target level. A double trapezium was used as the command trajectory (flexion in the elbow joint from the state of full extension, 0°, with positioning on the level of 50 or 60° and further flexion to the 100° angle, and a similar reverse movement). We compared (i) tracking movements, when the subject tried to adequately reproduce the movement of the target along the command trajectory visualized on the monitor screen and obtained visual information about the performed movement (shifts of the second light point in time/joint angle coordinates), and (ii) reproduction of these movements under conditions of limitation of the visual feedback (when there was no information about the performed movement). Parameters of the tracking movements and of their reproductions (delays of initiation of the movement phases as compared with the command signal, durations of these phases, and angle velocities of the forearm movement), as well as the quality of positioning after oppositely directed movements, were compared. Positioning on the target level performed under proprioceptive control (when visual control was limited) was accompanied by systematic errors, whose sign in most test series performed by most subjects coincided with the direction of the preceding movement phase. The pattern of signs of systematic positioning errors after movements of opposite directions was quite individual (typical of a given subject) and demonstrated no dependence on the value of the extensor loading. Averaged intragroup systematic errors of positioning after movement phase 1 (flexion to the target level) and phase 3 (extension to the same level) under conditions of a minimum extensor loading (0.5-1.0 N · m) were 2.57° and 2.52°, respectively. When the loading was substantial (3.6-6.0 N · m), the respective errors were 3.85° and 3.48°. The nonlinear properties of muscle stretch receptors in the elbow flexors and extensors (responsible for the significant dependence of the parameters of afferent signals produced in these receptors on the movement prehistory) are considered the primary reason for systematic errors when positioning is performed exclusively under proprioceptive control. The influence of alpha-gamma co-activation in active muscles on the characteristics of the above signals is discussed.  相似文献   

7.
The purpose of this study was to investigate the movement speed characteristics of 2 intrinsically different limbs. Twenty subjects volunteered to participate (10 men and 10 women). Each subject performed 5 repetitions of concentric knee and elbow extension and flexion movements at 60 through 500 d.s(-1) on an isokinetic dynamometer. Kinematic data were collected at 1,000 Hz and separated into rate of velocity development (RVD) and peak torque. Results demonstrated a significant (p < 0.05) main effect for sex for RVD and peak torque. Significant (p < 0.05) differences were also demonstrated between knee and elbow RVD and between knee and elbow peak torque at every speed tested. Neither knee and elbow RVD nor peak torque demonstrated any significant Pearson correlations at any speed tested (r = -0.17-0.41). These results collectively point to the specificity of limb speed and torque as a result of biophysical differences such as length and mass. Therefore, strength and speed may be modulated by neuromotor patterns that differ based on individual limbs.  相似文献   

8.
In healthy humans, we recorded the H reflex induced by transcutaneous stimulation of the tibial nerve (recording from the soleus muscle). In subjects in the lying position, we studied changes in the H reflex values after preceding voluntary arm movements realized with a maximum velocity after presentation of an acoustic signal. On the 200th to 300th msec after forearm flexion, long-lasting inhibition of the H reflex developed following a period of initial facilitation and reached the maximum, on average, 700 msec from the moment of the movement. Flexion of the contralateral upper limb in the elbow joint induced deeper inhibition than analogous movement of the ipsilateral arm. Long-lasting clear inhibition of the H reflex developed after arm flexion in the elbow joint but was slightly expressed after finger clenching. After inhibition reached the maximum, its time course was satisfactorily approximated by a logarithmic function of the time interval between the beginning of the conditioning voluntary movement and presentation of the test stimulus. Durations of inhibition calculated using a regression equation were equal to 6.6 sec and 8.5 sec after ipsilateral and contralateral elbow-joint flexions, respectively. Inhibition was not eliminated under conditions of tonic excitation of motoneurons of the tested muscle upon voluntary foot flexion. Long-lasting inhibition of the H reflex was also observed after electrical stimulation-induced flexions of the upper limb. The obtained data indicate that movements of the upper limb cause reflex long-lasting presynaptic inhibition of the soleus-muscle H reflex that can play a noticeable role in redistribution of the muscle tone during motor activity. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 221–227, May–June, 2008.  相似文献   

9.
Propulsion in swimming is achieved by complex sculling movements with elbow quasi-fixed on the antero-posterior axis to transmit forces from the hand and the forearm to the body. The purpose of this study was to investigate how elbow muscle coactivation was influenced by the front crawl stroke phases. Ten international level male swimmers performed a 200-m front crawl race-pace bout. Sagittal views were digitized frame by frame to determine the stroke phases (aquatic elbow flexion and extension, aerial elbow flexion and extension). Surface electromyograms (EMG) of the right biceps brachii and triceps brachii were recorded and processed using the integrated EMG to calculate a coactivation index (CI) for each phase. A significant effect of the phases on the CI was revealed with highest levels of coactivation during the aquatic elbow flexion and the aerial elbow extension. Swimmers stabilize the elbow joint to overcome drag during the aquatic phase, and act as a brake at the end of the recovery to replace the arm for the next stroke. The CI can provide insight into the magnitude of mechanical constraints supported by a given joint, in particular during a complex movement.  相似文献   

10.
Neuromusculoskeletal (NMS) modeling is a valuable tool in orthopaedic biomechanics and motor control research. To evaluate the feasibility of using electromyographic (EMG) signals with NMS modeling to estimate individual muscle force during dynamic movement, an EMG driven NMS model of the elbow was developed. The model incorporates dynamical equation of motion of the forearm, musculoskeletal geometry and musculotendon modeling of four prime elbow flexors and three prime elbow extensors. It was first calibrated to two normal subjects by determining the subject-specific musculotendon parameters using computational optimization to minimize the root mean square difference between the predicted and measured maximum isometric flexion and extension torque at nine elbow positions (0-120 degrees of flexion with an increment of 15 degrees ). Once calibrated, the model was used to predict the elbow joint trajectories for three flexion/extension tasks by processing the EMG signals picked up by both surface and fine electrodes using two different EMG-to-activation processing schemes reported in the literature without involving any trajectory fitting procedures. It appeared that both schemes interpreted the EMG somewhat consistently but their prediction accuracy varied among testing protocols. In general, the model succeeded in predicting the elbow flexion trajectory in the moderate loading condition but over-drove the flexion trajectory under unloaded condition. The predicted trajectories of the elbow extension were noted to be continuous but the general shape did not fit very well with the measured one. Estimation of muscle activation based on EMG was believed to be the major source of uncertainty within the EMG driven model. It was especially so apparently when fine wire EMG signal is involved primarily. In spite of such limitation, we demonstrated the potential of using EMG driven neuromusculoskeletal modeling for non-invasive prediction of individual muscle forces during dynamic movement under certain conditions.  相似文献   

11.
We studied coordination of central motor commands (СMCs) coming to muscles of the shoulder and shoulder belt in the course of single-joint and two-joint movements including flexion and extension of the elbow and shoulder joints. Characteristics of rectified and averaged EMGs recorded from a few muscles of the upper limb were considered correlates of the CMC parameters. Special attention was paid to coordination of CMCs coming to two-joint muscles that are able to function as common flexors (m. biceps brachii, caput breve, BBcb) and common extensors (m. triceps brachii, caput longum, TBcl) of the elbow and shoulder joints. Upper limb movements used in the tests included planar shifts of the arm from one spatial point to another resulting from either simultaneous changes in the angles of the shoulder and elbow joints or isolated sequential (two-stage) changes in these joint angles. As was found, shoulder muscles providing movements of the elbow with changes in the angle of the elbow joint, i.e., BBcb and TBcl, were also intensely involved in the performance of single-joint movements in the shoulder joint. The CMCs coming to two-joint muscles in the course of two-joint movements appeared, in the first approximation, as sums of the commands received by these muscles in the course of corresponding single-joint movements in the elbow and shoulder joints. Therefore, if we interpret the isolated forearm movement performed due to a change in the angle of the elbow joint as the main motor event, while the shoulder movement is considered the accessory one, we can conclude that realization of a two-joint movement of the upper-limb distal part is based on superposition of CMCs related to basic movements (main and accessory). Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 48–56, January–February, 2009.  相似文献   

12.
Following stroke, reaching movements are slow, segmented, and variable. It is unclear if these deficits result from a poorly constructed movement plan or an inability to voluntarily execute an appropriate plan. The acoustic startle reflex provides a means to initiate a motor plan involuntarily. In the presence of a movement plan, startling acoustic stimulus triggers non-voluntary early execution of planned movement, a phenomenon known as the startReact response. In unimpaired individuals, the startReact response is identical to a voluntarily initiated movement, except that it is elicited 30-40 ms. As the startReact response is thought to be mediated by brainstem pathways, we hypothesized that the startReact response is intact in stroke subjects. If startReact is intact, it may be possible to elicit more task-appropriate patterns of muscle activation than can be elicited voluntarily. We found that startReact responses were intact following stroke. Responses were initiated as rapidly as those in unimpaired subjects, and with muscle coordination patterns resembling those seen during unimpaired volitional movements. Results were striking for elbow flexion movements, which demonstrated no significant differences between the startReact responses elicited in our stroke and unimpaired subject groups. The results during planned extension movements were less straightforward for stroke subjects, since the startReact response exhibited task inappropriate activity in the flexors. This inappropriate activity diminished over time. This adaptation suggests that the inappropriate activity was transient in nature and not related to the underlying movement plan. We hypothesize that the task-inappropriate flexor activity during extension results from an inability to suppress the classic startle reflex, which primarily influences flexor muscles and adapts rapidly with successive stimuli. These results indicate that stroke subjects are capable of planning ballistic elbow movements, and that when these planned movements are involuntarily executed they can be as rapid and appropriate as those in unimpaired individuals.  相似文献   

13.
Ten healthy sedentary students were exposed to 20 days bed rest (BR) to study the effect of simulated weightlessness on force(F)-velocity(V) characteristics and power(P) output of upper and lower limb movements. F, V and P were measured using a special dynamometer applicable to single joint movements [elbow flexion(EF) and extension(EE), knee flexion(KF) and extension(KE), and hip flexion] or multi-joint movements (squatting). Physiological cross-sectional areas(PCSA) of KF and KE muscles were measured by a magnetic resonance imaging technique. After BR, attenuation in P were observed in lower limb movements (decreased by 19.8-43.6% for squatting, KF and KE), in upper limb movements on the other hand, the decreases in P were not significant (approximately -5% for EF and EE). Decrease in P in lower limb were more pronounced in heavier loaded conditions which were characterized by decreases in both F and V. For KF and KE, decreases in maximal static F (-18.9 to approximately -26.8%) were more pronounced than the decreases observed in the PCSA (approximately -7%), resulting in decreases in specific tension (-12.3 to approximately -22.1%). Neural excitation potentials to generate maximal muscle tension or P might also be influenced by weightlessness.  相似文献   

14.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

15.
The purpose of the current study was to investigate the effect of 10 weeks of strength training on the flexibility of sedentary middle-aged women. Twenty women were randomly assigned to either a strength training group (n = 10; age, 37 +/- 1.7 years; body mass, 65.2 +/- 10.7 kg; height, 157.7 +/- 10.8 cm; and body mass index, 25.72 +/- 3.3 kg x m(-2)) or a control group (n = 10; age, 36.9 +/- 1.2 years; body mass, 64.54 +/- 10.18 kg; height, 158.1 +/- 8.9 cm; and body mass index, 26.07 +/- 2.8 kg x m(-2)). The strength training program was a total body session performed in a circuit fashion and consisted of 7 exercises performed for 3 circuits of 8 to 12 repetitions maximum (RM), except for the abdominal exercise which was performed for 15 to 20 RM. Flexibility measurements were taken for 10 articulation movements pre and post training: shoulder flexion and extension, shoulder horizontal adduction and abduction, elbow flexion, hip flexion and extension, knee flexion, and trunk flexion and extension. Pre and post training, 10 RM strength significantly increased (p < 0.05). Of the movements examined, only shoulder horizontal adduction, hip flexion and extension, and trunk flexion and extension demonstrated significant increases (p < 0.05). Neither elbow nor knee flexion showed a significant change with weight training. The control group showed no significant change in any of the flexibility measures determined. In conclusion, weight training can increase flexibility in previously sedentary middle-aged women in some, but not all joint movements.  相似文献   

16.
We studied movements of the forearm within the limits of 0 deg (full extension)-flexion to a 100 deg angle in the elbow joint-a reverse movement with episodes of target positioning at an intermediate target level (50 deg). The standard trajectory and trajectory of the performed movement were visualized by movements of cursors on the screen of a monitor in joint angle vs time coordinates. Systematic errors of blindfold (kinesthetic) positioning (after removal of the visual feedback informing the subject on the characteristics of the performed movement) observed under control conditions and after realization of a fatigue-inducing series of flexions/extensions of the forearm with a high loading were compared. It was found that the development of fatigue evoked no fundamental changes in the pattern of systematic errors of kinesthetic positioning. Both considerable prevailing of positive systematic errors within the examined group, their high interindividual variability, and (in most cases) patterns of signs of errors after reaching the target level by movements of opposite directions typical of the given subject were preserved. Mean intragroup values after the development of fatigue demonstrated some trend toward a decrease, but these changes did not reach the significance level. Possible mechanisms of the influence of muscle fatigue on the process of target positioning of a limb link realized exclusively under proprioceptive control are discussed. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 432–439, September–December, 2006.  相似文献   

17.
Research examining the electromyographic (EMG) burst structure of rapid discrete limb movements has led to discordant findings concerning agonist burst duration. Some research has shown that duration varies as a function of movement speed while other research has shown burst constancy. Unfortunately, much of this research may be confounded by not carefully controlling movement termination accuracy and movement time (MT). Due to these potential problems, the present study was conducted to determine the effects of strict spatiotemporal constraints on EMG characteristics of a rapid elbow flexion-extension response under two movement extent conditions across five different MTs. Results revealed that a decreased MT was accompanied by a decreased agonist (biceps) burst duration and increased agonist burst amplitude. The burst duration and amplitude both increased as the movement extent increased with MT held constant. None of three current theoretical perspectives of rapid movement control (the impulse-timing model, the speed-control system hypothesis, or the speed-sensitive strategy) could fully account for these results. Instead, a control strategy was exhibited in which moving faster was accomplished by relative scaling of burst area via concomitant expansion of burst amplitude and compression of burst duration.  相似文献   

18.
In humans, we tested targeted movements of the forearm and shoulder performed in the vertical direction (in a parallel manner with respect to the sagittal plane). Movements were realized, first, with the possibility for visual control of the coincidence of the angle of the limb link axis vs the vertical and the target angle value (using an optic system and video recording), and, second, in the absence of the above control. Movements including flexion (i.e., movement against the gravitation force) – extension of the limb link with an individually selected convenient velocity were initiated and terminated according to the presentation of permissive sound signals; simultaneously, EMGs were recorded from a few muscles flexing and extending the elbow and shoulder joints. We analyzed systematic errors of target positioning of the forearm and shoulder in movements realized exclusively under kinesthetic control. In the case of isolated flexion of the forearm for a 90 deg target angle, such errors in all members of the examined group (n = 11) were positive. These errors were, on average, 8.1 ± 0.7 deg without loading and reached 11.2 ± 0.9 deg with introduction of a 10 to 30 N additional loading on the forearm. Isolated movements of the shoulder for a 70 deg target angle (performed without loading, with full extension of the forearm and its voluntary fixation) were accompanied by positive errors of 18.3 ± 1.1 deg, on average. Both the movements and positioning were performed due to changes in the levels of activity of the flexor muscles, with minimum involvement of the antagonists. The nonlinear properties of the receptor apparatus responsible for the formation of a kinesthetic estimate of the joint angle (first of all, of muscle spindles) are a fundamental reason for positive errors of target positioning of the limb links realized under kinesthetic control in the absence of the visual one.  相似文献   

19.
Biomechanical optimization models that apply efficiency-based objective functions often underestimate or negate antagonist co-activation. Co-activation assists movement control, joint stabilization and limb stiffness and should be carefully incorporated into models. The purposes of this study were to mathematically describe co-activation relationships between elbow flexors and extensors during isometric exertions at varying intensity levels and postures, and secondly, to apply these co-activation relationships as constraints in an optimization muscle force prediction model of the elbow and assess changes in predictions made while including these constraints. Sixteen individuals performed 72 isometric exertions while holding a load in their right hand. Surface EMG was recorded from elbow flexors and extensors. A co-activation index provided a relative measure of flexor contribution to total activation about the elbow. Parsimonious models of co-activation during flexion and extension exertions were developed and added as constraints to a muscle force prediction model to enforce co-activation. Three different PCSA data sets were used. Elbow co-activation was sensitive to changes in posture and load. During flexion exertions the elbow flexors were activated about 75% MVC (this amount varied according to elbow angle, shoulder flexion and abduction angles, and load). During extension exertions the elbow flexors were activated about 11% MVC (this amount varied according to elbow angle, shoulder flexion angle and load). The larger PCSA values appeared to be more representative of the subject pool. Inclusion of these co-activation constraints improved the model predictions, bringing them closer to the empirically measured activation levels.  相似文献   

20.
The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号