首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice.

Methods

Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres.

Results

It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells.

Conclusions

Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.  相似文献   

2.

Objective

This study analyzed the clinicopathological correlation between ovarian cancer (OC) and RECQL1 DNA helicase to assess its therapeutic potential.

Methods

Surgically resected OC from 118 retrospective cases, for which paraffin blocks and all clinical data were complete, were used in this study. RECQL1 and Ki-67 immunostaining were performed on sections to correlate RECQL1 staining with subtype and patient survival. Ten OC and two normal cell lines were then examined for RECQL1 expression and were treated with siRNA against RECQL1 to assess its effect on cell proliferation.

Results

Of the 118 cases of adenocarcinoma (50, serous; 26, endometrioid; 21, clear cell; 15, mucinous; 6, other histology), 104 (90%) showed varying levels of RECQL1 expression in the nuclei of OC cells. The Cox hazards model confirmed that diffuse and strong staining of RECQL1 was correlated with histological type. However, RECQL1 expression did not correlate with overall patient survival or FIGO stage. In vitro, RECQL1 expression was exceptionally high in rapidly growing OC cell lines, as compared with normal cells. Using a time-course analysis of RECQL1-siRNA transfection, we observed a significant inhibition in cell proliferation.

Conclusions

RECQL1 DNA helicase is a marker of highly proliferative cells. RECQL1-siRNA may offer a new therapeutic strategy against various subtypes of OC, including platinum-resistant cancers, or in recurrent cancers that gain platinum resistance.  相似文献   

3.
4.

Background

The relevance of lysophosphatidylcholine acyltransferase1 (LPCAT1), a cytosolic enzyme in the remodeling pathway of phosphatidylcholine metabolism, in oral squamous cell carcinoma (OSCC) is unknown. We investigated LPCAT1 expression and its functional mechanism in OSCCs.

Methods

We analyzed LPCAT1 mRNA and protein expression levels in OSCC-derived cell lines. Immunohistochemistry was performed to identify correlations between LPCAT1 expression levels and primary OSCCs clinicopathological status. We established LPCAT1 knockdown models of the OSCC-derived cell lines (SAS, Ca9-22) for functional analysis and examined the association between LPCAT1 expression and the platelet-activating factor (PAF) concentration and PAF-receptor (PAFR) expression.

Results

LPCAT1 mRNA and protein were up-regulated significantly (p<0.05) in OSCC-derived cell lines compared with human normal oral keratinocytes. Immunohistochemistry showed significantly (p<0.05) elevated LPCAT1 expression in primary OSCCs compared with normal counterparts and a strong correlation between LPCAT1-positive OSCCs and tumoral size and regional lymph node metastasis. In LPCAT1 knockdown cells, cellular proliferation and invasiveness decreased significantly (p<0.05); cellular migration was inhibited compared with control cells. Down-regulation of LPCAT1 resulted in a decreased intercellular PAF concentration and PAFR expression.

Conclusion

LPCAT1 was overexpressed in OSCCs and correlated with cellular invasiveness and migration. LPCAT1 may contribute to tumoral growth and metastasis in oral cancer.  相似文献   

5.

Background

Myelodysplastic syndromes (MDS) are clonal marrow stem-cell disorders with a high risk of progression to acute myeloid leukemia (AML). Treatment options are limited and targeted therapies are not available for MDS. In the present study, we investigated the cytotoxicity and the molecular mechanism of Homoharringtonine (HHT) and Bortezomib towards high-risk MDS cell line SKM-1 in vitro and the role of miR-3151 was first evaluated in SKM-1 cells.

Methods

SKM-1 cells were treated with different concentrations of HHT or Bortezomib, and cell viability was analyzed with CCK-8 assay. The influence on cell proliferation, cell cycle distribution and the percentage of apoptosis cells were analyzed by flow cytometry. Calcusyn software was used to calculate combination index (CI) values. Western blot was used to analysis phosphorylation of Akt and nuclear NF-κB protein expression in SKM-1 cells. Mature miR-3151 level and p53 protein level were detected after HHT or Bortezomib treatment. The cell proliferation and p53 protein level were reassessed in SKM-1 cells infected with lentivirus to overexpress miR-3151.

Results

Simultaneous exposure to HHT and Bortezomib (10.4:1) resulted in a significant reduction of cell proliferation in SKM-1 cells (P < 0.05). Cell cycle arrest at G0/G1 and G2/M phase was observed (P < 0.05). HHT and Bortezomib synergistically induced cell apoptosis by regulating members of caspase 9, caspase 3 and Bcl-2 family (P < 0.01). The mechanisms of the synergy involved Akt and NF-κB signaling pathway inhibition, downregulation of mature miR-3151 and increment of downstream p53 protein level. Overexpression of miR-3151 promoted cell proliferation and inhibited p53 protein expression in SKM-1 (P < 0.01).

Conclusions

HHT and Bortezomib synergistically inhibit SKM-1 cell proliferation and induce apoptosis in vitro. Inhibition of Akt and NF-κB pathway signaling contribute to molecular mechanism of HHT and Bortezomib. miR-3151 abundance is implicated in SKM-1 cell viability, cell proliferation and p53 protein expression.  相似文献   

6.
7.
8.
9.
10.

Background

There have been numerous articles as to whether the staining index (SI) of astrocyte elevated gene-1 (AEG-1) adversely affects clinical progression and prognosis of gastrointestinal cancers. Nevertheless, controversy still exists in terms of correlations between AEG-1 SI and clinicopathological parameters including survival data. Consequently, we conducted a comprehensive meta-analysis to confirm the role of AEG-1 in clinical outcomes of gastrointestinal carcinoma patients.

Methods

We performed a comprehensive search in PubMed, ISI Web of Science, Cochrane Central Register of Controlled Trials, EMBASE, Science Direct, Wiley Online Library, China National Knowledge Infrastructure (CNKI), WanFang and Chinese VIP databases. STATA 12.0 (STATA Corp., College, TX) was used to analyze the data extracted from suitable studies and Newcastle-Ottawa Scale was applied to assess the quality of included articles.

Results

The current meta-analysis included 2999 patients and our results suggested that strong associations emerged between AEG-1 SI and histological differentiation (OR = 2.129, 95%CI: 1.377–3.290, P = 0.001), tumor (T) classification (OR = 2.272, 95%CI: 1.147–4.502, P = 0.019), lymph node (N) classification (OR = 2.696, 95%CI: 2.178–3.337, P<0.001) and metastasis (M) classification (OR = 3.731, 95%CI: 2.167–6.426, P<0.001). Furthermore, high AEG-1 SI was significantly associated with poor overall survival (OS) (HR = 2.369, 95%CI: 2.005–2.800, P<0.001) and deteriorated disease-free survival (DFS) (HR = 1.538, 95%CI: 1.171–2.020, P = 0.002). For disease-specific survival (DSS) and relapse-free survival (RFS), no statistically significant results were observed (HR = 1.573, 95%CI: 0.761–3.250, P = 0.222; HR = 1.432, 95%CI: 0.108–19.085, P = 0.786). Subgroup analysis demonstrated that high AEG-1 SI was significantly related to poor prognosis in esophageal squamous cell carcinoma (ESCC) (HR = 1.715, 95%CI: 1.211–2.410, P = 0.002), gastric carcinoma (GC) (HR = 2.255, 95%CI: 1.547–3.288, P<0.001), colorectal carcinoma (CRC) (HR = 2.922, 95%CI: 1.921–4.444, P<0.001), gallbladder carcinoma (GBC) (HR = 3.047, 95%CI: 1.685–5.509, P<0.001), hepatocellular carcinoma (HCC) (HR = 2.245, 95%CI: 1.620–3.113, P<0.001), pancreatic adenocarcinoma (PAC) (HR = 2.408, 95%CI: 1.625–3.568, P<0.001).

Conclusions

The current meta-analysis indicated that high AEG-1 SI might be associated with tumor progression and poor survival status in patients with gastrointestinal cancer. AEG-1 might play a vital role in promoting tumor aggression and could serve as a potential target for molecular treatments. Further clinical trials are needed to validate whether AEG-1 SI provides valuable insights into improving treatment decisions.  相似文献   

11.

Aims

Viral infection is associated with pancreatic beta cell destruction in fulminant type 1 diabetes mellitus. The aim of this study was to investigate the acceleration and protective mechanisms of beta cell destruction by establishing a model of viral infection in pancreatic beta cells.

Methods

Polyinosinic:polycytidylic acid was transfected into MIN6 cells and insulin-producing cells differentiated from human induced pluripotent stem cells via small molecule applications. Gene expression was analyzed by real-time PCR, and apoptosis was evaluated by caspase-3 activity and TUNEL staining. The anti-apoptotic effect of Exendin-4 was also evaluated.

Results

Polyinosinic:polycytidylic acid transfection led to elevated expression of the genes encoding IFNα, IFNβ, CXCL10, Fas, viral receptors, and IFN-inducible antiviral effectors in MIN6 cells. Exendin-4 treatment suppressed the elevated gene expression levels and reduced polyinosinic:polycytidylic acid-induced apoptosis both in MIN6 cells and in insulin-producing cells from human induced pluripotent stem cells. Glucagon-like peptide-1 receptor, protein kinase A, and phosphatidylinositol-3 kinase inhibitors counteracted the anti-apoptotic effect of Exendin-4.

Conclusions

Polyinosinic:polycytidylic acid transfection can mimic viral infection, and Exendin-4 exerted an anti-apoptotic effect both in MIN6 and insulin-producing cells from human induced pluripotent stem cells.  相似文献   

12.

Purpose

The purpose of the present study was to investigate the role of glutathione peroxidase 4 (GPx4) in glutamate-induced oxytosis in the retina.

Methods

For in vitro studies, an immortalized rat retinal precursor cell line R28 was used. Cells were transfected with siRNA specifically silencing GPx4 or with scrambled control siRNA. Lipid peroxidation was evaluated by 4-hydroxy-2-nonenal (4-HNE) immunostaining. Cytotoxicity and cell death were evaluated using an LDH activity assay and annexin V staining, respectively. Cells transfected with GPx4 siRNA or control siRNA were treated with glutamate (1 or 2 mM), and the cytotoxicity was evaluated using the LDH activity assay. For in vivo studies, retinal ganglion cell damage was induced by intravitreal injection of 25-mM N-methyl-D-aspartate (NMDA, 2 μL/eye) in GPx4+/+ and GPx4+/− mice. The evaluation of lipid peroxidation (4-HNE immunostaining), apoptosis (TUNEL staining), and cell density in the ganglion cell layer (GCL) were performed at 12 h, 1 day, and 7 days after the NMDA injection.

Results

GPx4 knockdown significantly increased LDH activity by 13.9-fold (P < 0.01) and increased peroxidized lipid levels by 3.2-fold in R28 cells (P < 0.01). In cells transfected with scrambled control siRNA, treatment with glutamate at 1 or 2 mM did not increase LDH activity; whereas, in cells transfected with GPx4 siRNA, glutamate treatment significantly increased LDH activity (1.52-fold, P < 0.01). GPx4+/− mice exhibited higher levels of lipid peroxidation in retinas treated with NMDA than GPx4+/+ mice (1.26-fold, P < 0.05). GPx4+/− mice had more TUNEL-positive cells induced by NMDA in GCL (1.45-fold, P < 0.05). In addition, the cell density in GCL of GPx4+/− mice was 19% lower than that in GPx4+/+ mice after treatment with NMDA (P < 0.05).

Conclusion

These results suggest that defective GPx4 expression is associated with enhanced cytotoxicity by glutamate-induced oxytosis in the retina.  相似文献   

13.

Background

Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC) tissues. However, little is known about its function and mechanism involving in NPC development and progression.

Methods

Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145.

Results

MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01). Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1) was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion.

Conclusions

Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.  相似文献   

14.
15.
16.

Background

Incidence of head and neck squamous cell carcinoma (HNSCC) has continuously increased in past years while its survival rate has not been significantly improved. There is a critical need to better understand the genetic regulation of HNSCC tumorigenesis and progression. In this study, we comprehensively analyzed the function of miRNA-128 (miR-128) in the regulation of HNSCC growth and its putative targets in vitro and in vivo systems.

Methods

The function and targets of miR-128 were investigated in human HNSCC cell lines (JHU-13 and JHU-22), which were stably transfected with the miR-128 gene using a lentiviral delivery system. The expression levels of miR-128 and its targeted proteins were analyzed with qRT-PCR, Western blotting and flow cytometry. The binding capacity of miRNA-128 to its putative targets was determined using a luciferase report assay. MTT, colony formation, and a tumor xenograft model further evaluated the effects of miR-128 on HNSCC growth.

Results

We generated two miR-128 stably transfected human HNSCC cell lines (JHU-13miR-128 and JHU-22miR-128). Enforced expression of miR-128 was detected in both cultured JHU-13miR-128 and JHU-22miR-128 cell lines, approximately seventeen to twenty folds higher than in vector control cell lines. miRNA-128 was able to bind with the 3′-untranslated regions of BMI-1, BAG-2, BAX, H3f3b, and Paip2 mRNAs, resulting in significant reduction of the targeted protein levels. We found that upregulated miR-128 expression significantly inhibited both JHU-13miR-128 and JHU-22miR-128 cell viability approximately 20 to 40%, and the JHU-22miR-128 tumor xenograft growth compared to the vector control groups.

Conclusions

miR-128 acted as a tumor suppressor inhibiting the HNSCC growth by directly mediating the expression of putative targets. Our results provide a better understanding of miRNA-128 function and its potential targets, which may be valuable for developing novel diagnostic markers and targeted therapy.  相似文献   

17.

Objectives

Although there is evidence that visfatin is associated with atherogenesis, the effect of visfatin on plaque stability has not yet been explored.

Methods

In vivo, vulnerable plaques were established by carotid collar placement in apolipoprotein E–deficient (ApoE−/−) mice, and lentivirus expressing visfatin (lenti-visfatin) was locally infused in the carotid artery. The lipid, macrophage, smooth muscle cell (SMC) and collagen levels were evaluated, and the vulnerability index was calculated. In vitro, RAW264.7 cells were stimulated with visfatin, and the MMPs expressions were assessed by western blot and immunofluorescence. And the mechanism that involved in visfatin-induced MMP-8 production was investigated.

Results

Transfection with lenti-visfatin significantly promoted the expression of visfatin which mainly expressed in macrophages in the plaque. Lenti-visfatin transfection significantly promoted the accumulation of lipids and macrophages, modulated the phenotypes of smooth muscle cells and decreased the collagen levels in the plaques, which significantly decreased the plaque stability. Simultaneously, transfection with lenti-visfatin significantly up-regulated the expression of MMP-8 in vivo, as well as MMP-1, MMP-2 and MMP-9. Recombinant visfatin dose- and time-dependently up-regulated the in vitro expression of MMP-8 in macrophages. Visfatin promoted the translocation of NF-κB, and inhibition of NF-κB significantly reduced visfatin-induced MMP-8 production.

Conclusions

Visfatin increased MMP-8 expression, promoted collagen degradation and increased the plaques vulnerability index.  相似文献   

18.

Background & Aims

At least eight genotypes of Hepatitis B virus (HBV) have been identified. HBV genotype C is the most common genotype in Japan, although the incidence of HBV genotype A is increasing. The reason underlying the differences in viral multiplication of the HBV genotypes is unclear, especially in vivo. The purpose of this study was to elucidate the differences in HBV load and the persistence of viremia in vivo between genotypes A and C.

Methods

Immunodeficient NOG mice were transfected by hydrodynamic injection with the HBV expression plasmids pHBA1.2 or pHBC1.2, which contain overlength (1.2-mer) copies of the genomes of HBV genotype A or C, respectively.

Results

One day after transfection, the number of HBcAg-positive hepatocytes and serum HBV DNA levels were similar between mice transfected with pHBA1.2 and pHBC1.2. Serum levels of HBV DNA, HBsAg and HBeAg in mice transfected with pHBA1.2 were maintained over 5 months. In contrast, those in mice with pHBC1.2 gradually decreased over time and reached undetectable levels within 3 months after transfection. HBcAg-stained hepatocytes were detected in mice transfected with pHBA1.2, but not pHBC1.2, 5 months post-transfection. Double-staining immunohistochemistry revealed that the number of cleaved caspase3-stained, HBcAg-positive hepatocytes in the pHBC1.2-transfected mice was higher than in the pHBA1.2-transfected mice 3 days post-transfection. Moreover, the plasmid DNA and covalently closed circular DNA levels were decreased in the livers of pHBC1.2-transfected mice. These results suggested that hepatocytes expressing HBV genotype C were eliminated by apoptosis in the absence of immune cells more often than in hepatocytes expressing HBV genotype A.

Conclusions

Immunodeficient mice transfected with HBV genotype A develop persistent viremia, whereas those transfected with HBV genotype C exhibit transient viremia accompanied by apoptosis of HBV-expressing hepatocytes. This differences may affect the clinical courses of patients infected with HBV genotypes A and C.  相似文献   

19.

Background

Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far.

Methods and Findings

To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis.

Conclusions

GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.  相似文献   

20.

Introduction

Loss of annulus fibrosus (AF) integrity predisposes to disc herniation and is associated with IVD degeneration. Successful implementation of biomedical intervention therapy requires in-depth knowledge of IVD cell biology. We recently generated unique clonal human nucleus pulposus (NP) cell lines. Recurring functional cellular phenotypes from independent donors provided pivotal evidence for cell heterogeneity in the mature human NP. In this study we aimed to generate and characterize immortal cell lines for the human AF from matched donors.

Methods

Non-degenerate healthy disc material was obtained as surplus surgical material. AF cells were immortalized by simian virus Large T antigen (SV40LTAg) and human telomerase (hTERT) expression. Early passage cells and immortalized cell clones were characterized based on marker gene expression under standardized culturing and in the presence of Transforming Growth factor β (TGFβ).

Results

The AF-specific expression signature included COL1A1, COL5A1, COL12A1, SFRP2 and was largely maintained in immortal AF cell lines. Remarkably, TGFβ induced rapid 3D sheet formation in a subgroup of AF clones. This phenotype was associated with inherent differences in Procollagen type I processing and maturation, and correlated with differential mRNA expression of Prolyl 4-hydroxylase alpha polypeptide 1 and 3 (P4HA1,3) and Lysyl oxidase (LOX) between clones and differential P4HA3 protein expression between AF cells in histological sections.

Conclusion

We report for the first time the generation of representative human AF cell lines. Gene expression profile analysis and functional comparison of AF clones revealed variation between immortalized cells and suggests phenotypic heterogeneity in the human AF. Future characterization of AF cellular (sub-)populations aims to combine identification of additional specific AF marker genes and their biological relevance. Ultimately this knowledge will contribute to clinical application of cell-based technology in IVD repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号