首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Morphogenesis of the lung is regulated by reciprocal signaling between epithelium and mesenchyme. In previous studies, we have shown that FGF9 signals are essential for lung mesenchyme development. Using Fgf9 loss-of-function and inducible gain-of-function mouse models, we show that lung mesenchyme can be divided into two distinct regions: the sub-mesothelial and sub-epithelial compartments, which proliferate in response to unique growth factor signals. Fibroblast growth factor (FGF) 9 signals from the mesothelium (the future pleura) to sub-mesothelial mesenchyme through both FGF receptor (FGFR) 1 and FGFR2 to induce proliferation. FGF9 also signals from the epithelium to the sub-epithelial mesenchyme to maintain SHH signaling, which regulates cell proliferation, survival and the expression of mesenchymal to epithelial signals. We further show that FGF9 represses peribronchiolar smooth muscle differentiation and stimulates vascular development in vivo. We propose a model in which FGF9 and SHH signals cooperate to regulate mesenchymal proliferation in distinct submesothelial and subepithelial regions. These data provide a molecular mechanism by which mesothelial and epithelial FGF9 directs lung development by regulating mesenchymal growth, and the pattern and expression levels of mesenchymal growth factors that signal back to the epithelium.  相似文献   

2.
Fibroblast growth factor (FGF) signaling has been shown to regulate lung epithelial development but its influence on mesenchymal differentiation has been poorly investigated. To study the role of mesenchymal FGF signaling in the differentiation of the mesenchyme and its impact on epithelial morphogenesis, we took advantage of Fgfr2c(+/Delta) mice, which due to a splicing switch express Fgfr2b in mesenchymal tissues and manifest Apert syndrome-like phenotypes. Using a set of in vivo and in vitro studies, we show that an autocrine FGF10-FGFR2b signaling loop is established in the mutant lung mesenchyme, which has several consequences. It prevents the entry of the smooth muscle progenitors into the smooth muscle cell (SMC) lineage and results in reduced fibronectin and elastin deposition. Levels of Fgf10 expression are raised within the mutant mesenchyme itself. Epithelial branching as well as epithelial levels of FGF and canonical Wnt signaling is dramatically reduced. These defects result in arrested development of terminal airways and an "emphysema like" phenotype in postnatal lungs. Our work unravels part of the complex interactions that govern normal lung development and may be pertinent to understanding the basis of respiratory defects in Apert syndrome.  相似文献   

3.
The role of WNT signaling and its interactions with other morphogenetic pathways were investigated during lung development. Previously, we showed that targeted disruption of Wnt5a results in over-branching of the epithelium and thickening of the interstitium in embryonic lungs. In this study, we generated and characterized transgenic mice with lung-specific over-expression of Wnt5a from the SpC promoter. Over-expression of Wnt5a interfered with normal epithelial-mesenchymal interactions resulting in reduced epithelial branching and dilated distal airways. During early lung development, over-expression of Wnt5a in the epithelium resulted in increased Fgf10 in the mesenchyme and decreased Shh in the epithelium. Both levels and distribution of SHH receptor, Ptc were reduced in SpC-Wnt5a transgenic lungs and were reciprocally correlated to changes of Fgf10 in the mesenchyme, suggesting that SHH signaling is decreased by over-expression of Wnt5a. Cultured mesenchyme-free epithelial explants from SpC-Wnt5a transgenic lungs responded abnormally to recombinant FGF10 supplied uniformly in the Matrigel with dilated branch tips that mimic the in vivo phenotype. In contrast, chemotaxis of transgenic epithelial explants towards a directional FGF10 source was inhibited. These suggest that over-expression of Wnt5a disrupts epithelial-response to FGF10. In conclusion, Wnt5a regulates SHH and FGF10 signaling during lung development.  相似文献   

4.
5.
Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required for cecal morphogenesis. Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud. In the cecal region of Fgf9(-/-) embryos, mesenchymal expression of Fgf10 and Bmp4 is notably absent, whereas the expression of epithelial markers, such as sonic hedgehog, is not affected. Using epithelial and whole explant cultures, we show that FGF9 signals to mesenchymal FGFRs and that FGF10 signals to epithelial FGFRs. Taken together, these data show that an epithelial FGF9 signal is necessary for the expansion of cecal mesenchyme and the expression of mesenchymal genes that are required for epithelial budding. Thus, these data add to our understanding of FGF-mediated reciprocal epithelial-mesenchymal signaling.  相似文献   

6.
A coordinated reciprocal interaction between epithelium and mesenchyme is involved in salivary gland morphogenesis. The submandibular glands (SMGs) of Wnt1-Cre/R26R mice have been shown positive for mesenchyme, whereas the epithelium is beta-galactosidase-negative, indicating that most mesenchymal cells are derived from cranial neural crest cells. Platelet-derived growth factor (PDGF) receptor alpha is one of the markers of neural crest-derived cells. In this study, we analyzed the roles of PDGFs and their receptors in the morphogenesis of mouse SMGs. PDGF-A was shown to be expressed in SMG epithelium, whereas PDGF-B, PDGFRalpha, and PDGFRbeta were expressed in mesenchyme. Exogenous PDGF-AA and -BB in SMG organ cultures demonstrated increased levels of branching and epithelial proliferation, although their receptors were found to be expressed in mesenchyme. In contrast, short interfering RNA for Pdgfa and -b as well as neutralizing antibodies for PDGF-AB and -BB showed decreased branching. PDGF-AA induced the expression of the fibroblast growth factor genes Fgf3 and -7, and PDGF-BB induced the expression of Fgf1, -3, -7, and -10, whereas short interfering RNA for Pdgfa and Pdgfb inhibited the expression of Fgf3, -7, and -10, indicating that PDGFs regulate Fgf gene expression in SMG mesenchyme. The PDGF receptor inhibitor AG-17 inhibited PDGF-induced branching, whereas exogenous FGF7 and -10 fully recovered. Together, these results indicate that fibroblast growth factors function downstream of PDGF signaling, which regulates Fgf expression in neural crest-derived mesenchymal cells and SMG branching morphogenesis. Thus, PDGF signaling is a possible mechanism involved in the interaction between epithelial and neural crest-derived mesenchyme.  相似文献   

7.
8.
Experimental evidence is rapidly emerging that the coupling of positive regulatory signals with the induction of negative feedback modulators is a mechanism of fine regulation in development. Studies in Drosophila and chick have shown that members of the SPROUTY family are inducible negative regulators of growth factors that act through tyrosine kinase receptors. We and others have shown that Fibroblast Growth Factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis. Herein, we provide direct evidence that mSprouty2 is dynamically expressed in the peripheral endoderm in embryonic lung and is downregulated in the clefts between new branches at E12.5. We found that mSprouty2 was expressed in a domain restricted in time and space, adjacent to that of Fgf10 in the peripheral mesenchyme. By E14.5, Fgf10 expression was restricted to a narrow domain of mesenchyme along the extreme edges of the individual lung lobes, whereas mSprouty2 was most highly expressed in the subjacent epithelial terminal buds. FGF10 beads upregulated the expression of mSprouty2 in adjacent epithelium in embryonic lung explant culture. Lung cultures treated with exogenous FGF10 showed greater branching and higher levels of mSpry2 mRNA. Conversely, Fgf10 antisense oligonucleotides reduced branching and decreased mSpry2 mRNA levels. However, treatment with exogenous FGF10 or antisense Fgf10 did not change Shh and FgfR2 mRNA levels in the lungs. We investigated Sprouty2 function during lung development by two different but complementary approaches. The targeted overexpression of mSprouty2 in the peripheral lung epithelium in vivo, using the Surfactant Protein C promoter, resulted in a low level of branching, lung lobe edges abnormal in appearance and the inhibition of epithelial proliferation. Transient high-level overexpression of mSpry2 throughout the pulmonary epithelium by intra-tracheal adenovirus microinjection also resulted in a low level of branching. These results indicate for the first time that mSPROUTY2 functions as a negative regulator of embryonic lung morphogenesis and growth.  相似文献   

9.
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung's striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree's fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung's complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways.  相似文献   

10.
Pleuropulmonary Blastoma (PPB) is the primary neoplastic manifestation of a pediatric cancer predisposition syndrome that is associated with several diseases including cystic nephroma, Wilms tumor, neuroblastoma, rhabdomyosarcoma, medulloblastoma, and ovarian Sertoli-Leydig cell tumor. The primary pathology of PPB, epithelial cysts with stromal hyperplasia and risk for progression to a complex primitive sarcoma, is associated with familial heterozygosity and lesion-associated epithelial loss-of-heterozygosity of DICER1. It has been hypothesized that loss of heterozygosity of DICER1 in lung epithelium is a non-cell autonomous etiology of PPB and a critical pathway that regulates lung development; however, there are no known direct targets of epithelial microRNAs (miRNAs) in the lung. Fibroblast Growth Factor 9 (FGF9) is expressed in the mesothelium and epithelium during lung development and primarily functions to regulate lung mesenchyme; however, there are no known mechanisms that regulate FGF9 expression during lung development. Using mouse genetics and molecular phenotyping of human PPB tissue, we show that FGF9 is overexpressed in lung epithelium in the initial multicystic stage of Type I PPB and that in mice lacking epithelial Dicer1, or induced to overexpress epithelial Fgf9, increased Fgf9 expression results in pulmonary mesenchymal hyperplasia and a multicystic architecture that is histologically and molecularly indistinguishable from Type I PPB. We further show that miR-140 is expressed in lung epithelium, regulates epithelial Fgf9 expression, and regulates pseudoglandular stages of lung development. These studies identify an essential miRNA-FGF9 pathway for lung development and a non-cell autonomous signaling mechanism that contributes to the mesenchymal hyperplasia that is characteristic of Type I PPB.  相似文献   

11.
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in α-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.  相似文献   

12.
Lineage formation in the lung mesenchyme is poorly understood. Using a transgenic mouse line expressing LacZ under the control of Fgf10 regulatory sequences, we show that the pool of Fgf10-positive cells in the distal lung mesenchyme contains progenitors of the parabronchial smooth muscle cells. Fgf10 gene expression is slightly repressed in this transgenic line. This allowed us to create a hypomorphic Fgf10 phenotype by expressing the LacZ transgene in a heterozygous Fgf10 background. Hypomorphic Fgf10 mutant lungs display a decrease in beta-galactosidase-positive cells around the bronchial epithelium associated with an accumulation of beta-galactosidase-expressing cells in the distal mesenchyme. This correlates with a marked reduction of alpha smooth muscle actin expression, thereby demonstrating that FGF10 is mostly required for the entry of mesenchymal cells into the parabronchial smooth muscle cell lineage. The failure of exogenous FGF10 to phosphorylate its known downstream targets ERK and AKT in lung mesenchymal cultures strongly suggests that FGF10 acts indirectly on the progenitor population via an epithelial intermediate. We provide support for a role of epithelial BMP4 in mediating the formation of parabronchial smooth muscle cells.  相似文献   

13.
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling.  相似文献   

14.
The juxtaposition of a dense capillary network to lung epithelial cells is essential for air-blood gas exchange. Defective lung vascular development can result in bronchopulmonary dysplasia and alveolar capillary dysplasia. Although vascular endothelial growth factor A (Vegfa) is required for formation of the lung capillary network, little is known regarding the factors that regulate the density and location of the distal capillary plexus and the expression pattern of Vegfa. Here, we show that fibroblast growth factor 9 (FGF9) and sonic hedgehog (SHH) signaling to lung mesenchyme, but not to endothelial cells, are each necessary and together sufficient for distal capillary development. Furthermore, both gain- and loss-of-function of FGF9 regulates Vegfa expression in lung mesenchyme, and VEGF signaling is required for FGF9-mediated blood vessel formation. FGF9, however, can only partially rescue the reduction in capillary density found in the absence of SHH signaling, and SHH is unable to rescue the vascular phenotype found in Fgf9(-/-) lungs. Thus, both signaling systems regulate distinct aspects of vascular development in distal lung mesenchyme. These data suggest a molecular mechanism through which FGF9 and SHH signaling coordinately control the growth and patterning of the lung capillary plexus, and regulate the temporal and spatial expression of Vegfa.  相似文献   

15.
16.
The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF-β1 and/or overexpressing Wnt7B. The cellular distribution and established biologic activity of FGF9 make it a potentially strong candidate for contributing to the progression of IPF.  相似文献   

17.
18.
Normal development of the respiratory system is essential for survival and is regulated by multiple genes and signaling pathways. Both Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung and trachea; and, although multiple genes are known to be required in the epithelium, only Fgfs have been well studied in the mesenchyme. In this study, we investigated the roles of Tbx4 and Tbx5 in lung and trachea development using conditional mutant alleles and two different Cre recombinase transgenic lines. Loss of Tbx5 leads to a unilateral loss of lung bud specification and absence of tracheal specification in organ culture. Mutants deficient in Tbx4 and Tbx5 show severely reduced lung branching at mid-gestation. Concordant with this defect, the expression of mesenchymal markers Wnt2 and Fgf10, as well as Fgf10 target genes Bmp4 and Spry2, in the epithelium is downregulated. Lung branching undergoes arrest ex vivo when Tbx4 and Tbx5 are both completely lacking. Lung-specific Tbx4 heterozygous;Tbx5 conditional null mice die soon after birth due to respiratory distress. These pups have small lungs and show severe disruptions in tracheal/bronchial cartilage rings. Sox9, a master regulator of cartilage formation, is expressed in the trachea; but mesenchymal cells fail to condense and consequently do not develop cartilage normally at birth. Tbx4;Tbx5 double heterozygous mutants show decreased lung branching and fewer tracheal cartilage rings, suggesting a genetic interaction. Finally, we show that Tbx4 and Tbx5 interact with Fgf10 during the process of lung growth and branching but not during tracheal/bronchial cartilage development.  相似文献   

19.
20.
The development of digestive organs in vertebrates involves active epithelial-mesenchymal interactions. In the chicken proventriculus (glandular stomach), the morphogenesis and cytodifferentiation of the epithelium are controlled by the inductive signaling factors that are secreted from the underlying mesenchyme. Previous studies have shown that Fgf10 is expressed in the developing chicken proventricular mesenchyme, whereas its receptors are present in the epithelium. In our present study, we show that FGF10 is an early mesenchymal signal that is critically associated with the developmental processes in the proventricular epithelium. Furthermore, virus-mediated Fgf10 overexpression in ovo results in a hypermorphic epithelial structure and an increase in epithelial cell number. In contrast, the overexpression of a secreted FGFR2b (sFGFR2b), an FGF10 antagonist, blocks cell proliferation and gland formation in the proventricular epithelium in ovo. This downregulation of proliferative activity was subsequently found to retard gland formation and also to delay differentiation of the epithelium. These results demonstrate that FGF10 signaling, mediated by FGFR1b and/or FGFR2b, is required for proliferation and gland formation in the epithelium in the developing chick embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号