首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of bis(platinum) complexes of general formula [(PtClm(NH3)3-m)2(NH2(CH2)nNH2)]2(2-m)+ were studied with poly(dG-dC).poly(dG-dC), poly(dG-m5dC).poly(dG-m5dC) and poly(dG).poly(dC). When m = 0 (Complexes II, n = 2,4) the complexes are saturated 4+ cations capable only of electrostatic interactions with the polynucleotide. Where m = 1 the complexes contain two monodentate platinum coordination spheres with the chloride trans to the diamine bridge (Complexes I, n = 2,4, 1,1/t,t). Complexes I give CD spectra characteristic of a 'Z-like' conformation upon reaction with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) but not poly(dG).poly(dC). The B----Z transition appears independent of interplatinum diamine chain length. As little as 1 bis(platinum) complex per 25-30 base pairs is sufficient to observe the Z-like spectrum. Covalent binding is however not a prerequisite for Z-DNA formation because the polyvalent cations II are also very effective in inducing the B----Z transition in either poly(dG-dC).poly(dG-dC) or poly (dG-m5dC).poly(dG-m5dC). In these cases, the concentrations of II required are significantly lower than analogous monomeric agents such as [Co(NH3)6]3+. The possible biological consequences of the Z-DNA induction by bis(platinum) complexes are discussed.  相似文献   

2.
In this work, the B-->Z transition of poly(dG-dC).poly(dG-dC) and the B-->A transition of poly(dG).poly(dC) and of calf thymus (CT) DNA fragments modified by antitumor bifunctional polynuclear platinum complexes were investigated by circular dichroism (CD). The transition from the B- to Z-form of DNA was inducible with all three compounds studied, as indicated by an inversion of the B-form spectra. The B-->A transition in poly(dG).poly(dC) was induced easily by platinum complex binding alone, while the B-->A transition in CT DNA was induced by ethanol but inhibited by coordination of all polynuclear platinum compounds used here. It was shown that the compound [?cis-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/c,c) was most effective at inhibiting the B-->A transition in CT DNA, and [?trans-PtCl(NH3)2?2 mu-?trans-Pt(NH3)2(H2N(CH2)6NH2)2?] (NO3)4 (1,0,1/t,t,t) was least effective, while the effectiveness of [?trans-PtCl(NH3)2?2 mu-?H2N(CH2)6NH2?] (NO3)2 (1,1/t,t) fell between the two. This corresponded to the relative amounts of interstrand crosslinks in double-stranded DNA caused by each compound.  相似文献   

3.
The circular dichroism (CD) spectra of a series of DNA . platinum complexes are presented. The following platinum compounds, [Pt(dien)Cl]Cl, cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, trans-Pt-(NH3)2Cl2, K[Pt(NH3)Cl3] and K2[PtCl4] were complexed with the DNA extracted from bacteria Micrococcus lysodeikticus (72% dG + dC), Escherichia coli (50% dG + dC), Clostridium perfringens (32% dG + dC) and salmon sperm (41% dG + dC). Strong differences were found between the different DNA . Pt complexes. Three types of spectra clearly demonstrate the different platinum binding modes on DNA. In the first type, the platinum compound, i.e. [Pt(dien)Cl]Cl, is fixed to DNA with only one bond (monofunctional complex formation) and no significant change of the CD positive band of DNA is found. The main feature of the second type is a continuous intensity decrease of the positive band as observed for trans-Pt(NH3)2Cl2 (trans-bidentate complex formation). The third type concerns the cis-bidentate platinum fixation obtained with cis-Pt(NH3)2Cl2, cis-Pt(en)Cl2, K[Pt(NH3)Cl3] and K2[PtCl4]. The CD spectra are in this case characterized by an increase in the positive Cotton effect which is dG + dC-dependent up to an rb value around 0.10 (where rb = number of platinum atoms bound per nucleotide), followed by a decrease until DNA saturation with platinum is reached. A linear decrease in the amplitude of the negative band is detected in all the complexes except in the case of the monofunctional DNA . Pt complexes. For the cis-bidentate and trans-bidentate platinum fixation, a continuous bathochromic shift occurs.  相似文献   

4.
5.
Polynuclear platinum compounds comprise a unique class of anticancer agents with chemical and biological properties different from mononuclear platinum drugs. The lead compound of this class is bifunctional trinuclear platinum complex [[trans-PtCl(NH(3))(2)](2)mu-trans-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,t,t, BBR 3464). Interestingly, the geometry of the coordination spheres in this compound affects potency. For example, the central cis unit of [[trans-PtCl(NH(3))(2)](2)mu-cis-Pt(NH(3))(2)[H(2)N(CH(2))(6)NH(2)](2)](4+) (1,0,1/t,c,t, BBR 3499) results in substantially reduced cytotoxicity. It has been shown that the interactions of polynuclear platinum drugs with target DNA are distinct from the mononuclear-based cisplatin family. In the present work the DNA binding of 1,0,1/t,c,t in cell-free media was examined by the methods of molecular biophysics and compared to the binding of 1,0,1/t,t,t. The binding of 1,0,1/t,c,t is slower and less sequence specific. 1,0,1/t,c,t also forms on DNA long-range delocalized intrastrand and interstrand cross-links similarly as 1,0,1/t,t,t, although the frequency of interstrand adducts is markedly enhanced. Importantly, the adducts of 1,0,1/t,c,t distort DNA conformation and are repaired by cell-free extracts considerably more than the adducts of 1,0,1/t,t,t. It has been suggested that the unique properties of long-range interstrand cross-links of bifunctional trinuclear platinum complexes and resulting conformational alterations in DNA have critical consequences for their antitumor effects.  相似文献   

6.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

7.
The dinuclear platinum complexes [[trans -PtCl (NH3)2]2[mu]-[NH2(CH2) n NH2]](NO3)2[1,1/t,t ( n = 4,6)] and [[cis-PtCl(NH3)2]2[mu];-[NH2(CH2) n NH2](NO3) 2[1,1/c,c ( n = 4,6)] exhibit antitumour activity comparable with cisplatin. 1,1/c,c complexes do not form 1,2 GG intrastrand adducts, the major adduct of cisplatin, with double-stranded DNA. This 1H NMR spectroscopy study shows that, in the absence of a complementary strand, 1,1/c,c ( n = 4,6) form a 1,2 GG (N7, N7) intrastrand adduct with r(GpG), d(GpG) and d(TGGT). Initial binding to r(GpG) (and also reaction with GMP) at 37 degrees C was slower for 1,1/c,c compared with 1,1/t,t, whereas the second binding step (adduct closure) was faster for 1,1/c,c. However, the 1H NMR spectra of the 1,1/c,c adducts at 37 degrees C show two H8 signals, one of which is broad and becomes sharper on increasing the temperature, indicating restricted rotation around the Pt-N7 bond. For the d(GpG)-1,1/c,c ( n = 4) adduct, 2D NMR spectroscopy assigned the broad H8 signal to the 3' G, which has syn base orientation and 60% S-type/40% N-type sugar conformation. The 5' G has anti base orientation and S-type sugar conformation. Apart from the restricted rotation around the 3' G, the structure is similar to that of 1,2 GG intrastrand adducts of 1,1/t,t. This steric hindrance may explain the inability of 1,1/c,c complexes to form 1,2 GG intrastrand adducts with sterically more demanding double-stranded DNA.  相似文献   

8.
9.
10.
Complexes of general formula [PtCl2(NH3)L] with one radiosensitizing ligand per platinum are compared with ligand L alone, complexes with two radiosensitizers per platinum [PtCl2L2], and their analogs with NH3 ligands, with respect to radiosensitizing properties and toxicity in CHO cells. Radiosensitizing ligands, L, were misonidazole, metronidazole, 4(5)-nitroimidazole, and 2-amino-5-nitrothiazole, and the ammine analogs were cis- and trans-DDP [diamminedichloroplatinum(II)] and the monoammine, K[PtCl3(NH3)]. Results are related to a previous study on plasmid DNA binding by these series. The toxicity of the mono series [PtCl2(NH3)L], attributable to DNA binding, is much higher than the corresponding bis complexes, [PtCl2L2]. For L = misonidazole, toxicity is similar to the monoammine, but higher in hypoxic than in aerobic cells. trans-[PtCl2(NH3)-(misonidazole)] is more toxic than the cis isomer. Except for L = 4(5)-nitroimidazole, the complexes [PtCl2(NH3)L] are more toxic than L in air and hypoxia. Hypoxic radiosensitization by the mono complexes is comparable to the monoammine and is not better than free sensitizers, again except for L = 4(5)-nitroimidazole. Significantly lower sensitization is observed in oxic cells. The bis complexes [PtCl2L2], which do not bind to DNA as well as the mono complexes, are less effective radiosensitizers and less toxic than the [PtCl2(NH3)L] series.  相似文献   

11.
Cellular pharmacology of polynuclear platinum anti-cancer agents   总被引:3,自引:0,他引:3  
Study of the cellular pharmacology of the dinuclear platinum complexes, BBR3005 ([?trans-PtCl(NH3)2?2H2N(CH2)6NH2]2+), BBR3171 ([?cis-PtCl(NH3)2?2H2N(CH2)6NH2]2+) and the trinuclear platinum complex, BBR3464 ([?trans-PtCl(NH3)2?2 mu-?trans-Pt(NH3)2(H2N(CH2)6NH2)2?]4+) was undertaken in wild type and cisplatin-resistant L1210 murine leukemia cell lines. All complexes are potent cytotoxic agents against the wild type cell line. Only BBR3464 shows enhanced activity against the cisplatin-resistant cell line following a brief exposure. This enhanced activity is attributable, in part, to preserved accumulation, which contrasts with diminished accumulation of cisplatin and both dinuclear platinum complexes. The cisplatin-resistant cell line is relatively tolerant of DNA adducts induced by both cisplatin and BBR3464, but BBR3464 is much less affected. All complexes induce DNA interstrand cross-links. Di/trinuclear complex-induced interstrand cross-linking peaks early, suggesting rapid genomic access and interaction. Subsequent decay suggests susceptibility to DNA repair mechanisms. Peak and area-under-the-curve values for interstrand cross-linking among the complexes correlate poorly with cytotoxic effects, especially in the cisplatin-resistant cell line. This suggests that all interstrand cross-linking adducts are not equal in their cytotoxic effect, or other, non-interstrand cross-linking adducts are significant. BBR3464 has been selected for clinical development largely on the basis of results from in vivo activity and toxicity studies. These results show BBR3464 to have unique properties in the context of acquired cisplatin-resistance that enhance its candidacy as a potential anticancer agent.  相似文献   

12.
SRIXE mapping has been used to gain insight into the fate of platinum(II) and platinum(IV) complexes in cells and tumours treated with anticancer active complexes to facilitate the development of improved drugs. SRIXE maps were collected of thin sections of human ovarian (A2780) cancer cells treated with bromine containing platinum complexes, cis-[PtCl(2)(3-Brpyr)(NH(3))] (3-Brpyr=3-bromopyridine) and cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] (OAcBr=bromoacetate), or a platinum complex with an intercalator attached cis-[PtCl(2)(2-[(3-aminopropyl)amino]-9,10-anthracenedione)(NH(3))]. After 24h the complexes appear to be localised in the cell nucleus with a lower concentration in the surrounding cytoplasm. In cells treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] the concentration of bromine was substantially higher than in control cells and the bromine was co-localised with the platinum consistent with the 3-bromopyridine ligand remaining bound to the platinum. The cells treated with cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] also showed an increased level of bromine, but to a much lesser extent than for those treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] suggestive of substantial reduction of the platinum(IV) complex. Maps were also collected from thin sections of a 4T1.2 neo 1 mammary tumour xenograft removed from a mouse 3h after treatment with cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)] and revealed selective uptake of platinum by one cell.  相似文献   

13.
Bifunctional polynuclear platinum compounds represent a novel class of metal-based antitumor drugs which are currently undergoing preclinical development. A typical agent is [(trans-PtCl(NH(3))(2))(2)H(2)N(CH(2))(4)NH(2)]Cl(2) (1,1/t,t), which coordinates to bases in DNA and forms various types of covalent crosslinks. It also forms a 1,2-d(GpG) intrastrand adduct, the equivalent of the major DNA lesion of 'classical' cisplatin. In the present study differential scanning calorimetry and spectroscopic techniques were employed to characterize the influence of this crosslink on the thermal stability and energetics of 20 bp DNA duplexes site-specifically modified by 1,1/t,t. Thermal denaturation data revealed that the crosslink of 1,1/t,t reduced thermal and thermodynamical stability of the duplex noticeably more than that of 'classical' cisplatin. The energetic consequences of the intrastrand crosslink at the d(GG) site are discussed in relation to the structural distortions induced by this adduct in DNA and to its recognition and binding by HMG domain proteins. It has been suggested that the results of the present work are consistent with different DNA binding modes of cisplatin and polynuclear bifunctional DNA-binding drugs, which might be relevant to their distinct biological effectiveness.  相似文献   

14.
The reaction products obtained from mixtures of 5'-GMP and platinum(IV) compounds with formula Pt(IV)Cl4(LL) and Pt(IV)Cl2(OH)2(LL) (LL representing two monodentate or one bidentate amine ligand) have been characterized by proton NMR spectroscopy. The amines used are NH3, H2N-CH2-CH2-NH2 (ethylenediamine, en), H2N-CH2-C(CH3)2-CH2-NH2 (2,2-dimethyl-1,3-diaminopropane, dmdap), and HC(CH3)2-NH2 (isopropylamine, ipa). Conditions varied during the reaction are pH (values of 4, 7, and 10), effect of visible light, and addition of vitamin C as a reducing agent. In all cases, the major product appeared to be the bis(5'-GMP)(LL)Pt(II) compound. The pH effect is limited; i.e., at pH 4 the reactions proceed somewhat faster than at neutral pH, while at pH 10 slower reactions occur. The illumination with visible light also induces only slight differences in the yields of the products. On the other hand, when vitamin C is present, the reactions proceed quite rapidly, resulting in the same main product but in higher yields (up to 80%). The facts that apparently no Pt(IV) adducts with 5'-GMP can be observed under these conditions and that the major products are bis(5'-GMP)(LL)Pt(II) compounds clearly support the hypothesis that the antitumor activity of certain platinum(IV) compounds is based upon in vivo reduction to the corresponding platinum(II) compounds.  相似文献   

15.
The structural features of the drug-DNA adducts resulted from treatment of DNA with the platinum based mononuclear drug cisplatin and the binuclear drug [{trans-PtCl(NH3)2}2H2N(CH2)4NH2]Cl2 or bis(platin) have been investigated by atomic force microscopy (AFM). Reduction in the contour length of the DNA fragments has been observed after cisplatin treatment while, compaction and aggregation are found to be the primary structural modifications following treatment with the binuclear drug. The intermolecular interaction upon bis(platin) treatment leads to observation of highly condense aggregates without a distinct sight of single isolated DNA molecule. These differences in drug binding indicate that unlike the mononuclear drug cisplatin, bis(platin) causes extensive interhelical/intermolecular cross-linking through its multiple linking sites. To our knowledge, this is the first report of a comparative AFM study to monitor the effects of a mono- and a binuclear platinum anti-cancer drug on DNA structure. These observations should provide clues towards explaining the distinct biological activities of the two drugs.  相似文献   

16.
The aquation and subsequent reactions of the dinuclear Pt antitumor complexes [{trans-PtCl(NH(3))(2)}(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1,1/t,t) and [{cis-PtCl(NH(3))(2)}(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1,1/c,c) in 15 mM perchlorate, acetate or phosphate solutions were followed at 298 K by [(1)H,(15)N] HSQC 2D NMR spectroscopy. Rate and equilibrium constants for the initial reversible aquation and the subsequent reversible reaction with phosphate or acetate are reported. The rate constant for the first aquation step is two-fold lower for 1,1/c,c than 1,1/t,t but the anation rate constants are similar so that the equilibrium lies further towards the chloro form for the 1,1/c,c compound. A pK (a) value of 6.01+/-0.03 was determined for the diaquated species [{cis-Pt(NH(3))(2)(H(2)O)}(2)(mu-NH(2)(CH(2))(6)NH(2))](4+) (1,1/c,c-3) which is 0.4 units higher than that of the 1,1/t,t compound. The rate constants for the binding of acetate and phosphate to 1,1/t,t are similar, but the rate constant for the reverse reaction is close to ten-fold higher in the case of phosphate so that equilibrium conditions are attained more rapidly (12 h compared with 64 h). On the other hand, for 1,1/c,c the rate constants for the forward and reverse reactions with acetate and phosphate are quite similar so that equilibrium conditions are reached very slowly (80-100 h) and a greater proportion of phosphate-bound species are present. The reduced lability of the bound phosphate for 1,1/c,c is attributed to the formation of a macrochelate phosphate-bridged species which was characterized by (31)P NMR and ESI-MS. The speciation profiles of 1,1/t,t and 1,1/c,c under physiological conditions are explored.  相似文献   

17.
Bis[platinum(II)] [Cl2Pt(LL)PtCl2] complexes 2,5 and 8 with chiral non-racemic ligands: 1a-c (LL = (R,R), (S,S) and (R,S) N,N'-bis(3,4-diaminobutyl)hexanediamide); 4a,b (LL = (R,R) and (S,S) N,N'-bis[3,4-bis(diaminobutyl)] urea); 7a-d (LL' = (R,R), (S,S), (R,S) and (S,R) 4,5-diamino-N-(3,4-diaminobutyl) pentanamide) and bis[platinum(IV)] complex 10-13 with ligands 1a,b and 4a,b have been prepared and characterized by IR, 1H, 13C and 195Pt NMR spectra. The interactions of 2a-c, 5a, 5b, 8a-d and 10a with dsDNA were investigated with the goal of examining whether the chirality, the nature of the spacer and the oxidation state have an influence on platinum-DNA binding properties. All the bis[platinum(II)] complexes form with dsDNA intra- and interstrand crosslinks and crosslinks over sticky ends, whereas the bis[platinum(IV)] complex 10a only forms intra- and interstrand crosslinks. The platinum-DNA coordination sites were determined by the T4 DNA polymerase footprinting method. The results show that all investigated bis(platinum) complexes have high preference towards distinct purines. All isomeric bis(amide) 2a-c and mono(amide) 8a-d complexes exhibit nearly the same binding pattern, whereas the ureide complexes 5a and 5b have other coordination sites with higher sequence preference. Interestingly, the ureides 5a and 5b differ in their coordination sites not only in comparison to the bis(amides) 2a-c and mono(amides) 8a-d, but also between each other. The bis[platinum(IV)] complex 10a also differs in coordination sites in comparison to all the bis[platinum(II)] compounds.  相似文献   

18.
A new series of quinolone-platinum(II) conjugates, [Pt(Q'-NH2)(dmso)X2] and cis-[Pt(Q"-en)X2], where Q' and Q" are quinolones (flumequine, nalidixic acid or oxolinic acid) linked to monodentate and bidentate amine ligands, respectively, and X2 is Cl2 or 1,1-cyclobutanedicarboxylate, have been synthesized with the aim of examining the synergetic antitumor activity of quinolone intercalation and platinum(II) chelation. The complexes were characterized by elemental analyses and IR and multinuclear (1H and 195Pt) NMR spectroscopies, and then subjected to in vitro and in vivo bioassays using the leukemia L1210 cell line.  相似文献   

19.
The ability of two platinum(IV) antitumor agents, cis,cis,trans-PtIV[(CH3)2CHNH2]2Cl2(OH)2 (2) and cis,cis,trans-PtIV(NH3)2Cl2(OH)2 (4), to interact with PM2 DNA was examined. Analysis using gel electrophoresis showed that neither compound is able to alter the electrophoretic mobilities of the three forms of PM2 DNA in the gel. However, incubation of 2 and 4 with 2 equiv of Fe(ClO4)2 X 6H2O or 1 equiv of ascorbic acid results in reduction to yield the divalent complexes cis-PtII(NH3)2Cl2 (1) and cis-PtII-[(CH3)2CHNH2]2Cl2 (3). The structures of the reduction products were characterized by using elemental analysis as well as infrared and 195Pt NMR spectroscopies. Both 1 and 3 were found to bind to and unwind supercoiled form I PM2 DNA. The aforementioned observations support the suggestion that reduction is a means of activating the antitumor properties of 2 and 4.  相似文献   

20.
Interaction of novel bis(platinum) complexes with DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslinking of a short DNA fragment is detected by gel electrophoresis under denaturing conditions demonstrate that interstrand crosslinks are 250 fold more frequent among bis(platinum) adducts than among cisplatin-derived adducts under the conditions examined. These investigations indicate that bis(platinum) adducts contain a high frequency of structurally novel interstrand crosslinks formed through binding of the two platinum centers to opposite DNA strands. Unlike cisplatin, bis(platinum) complex binding does not unwind supercoiled DNA. Studies with the E. coli UvrABC nuclease complex demonstrate that both linear and supercoiled DNA containing bis(platinum) adducts are subject to incision by the repair enzyme complex. Initial studies using UvrABC nuclease as a probe to define the base and sequence specificity for bis(platinum) complex binding suggest that the specificity of the bis(platinum)s is similar, but not identical, to that of cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号