首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is presented for the estimation of the standard Gibbs energies of formation of biochemical compounds (and hence the Gibbs energies and equilibrium constants of biochemical reactions) from the contributions of groups. The method employs a large set of groups and special corrections. The contributions were estimated via multiple linear regression, using screened and weighted literature data. For most of the data employed, the error is less than 2 kcal/mol. The method provides a useful first approximation to Gibbs energies and equilibrium constants in biochemical systems.  相似文献   

2.
Qian H  Beard DA 《Biophysical chemistry》2005,114(2-3):213-220
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.  相似文献   

3.
Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature.  相似文献   

4.
Levels of thermodynamic treatment of biochemical reaction systems.   总被引:1,自引:1,他引:0       下载免费PDF全文
Equilibrium calculations on biochemical reaction systems can be made at three levels. Level 1 is the usual chemical calculation with species at specified temperature and pressure using standard Gibbs energies of formation of species or equilibrium constants K. Level 2 utilizes reactants such as ATP (a sum of species) at specified T, P, pH, and pMg with standard transformed Gibbs energies of formation of reactants or apparent equilibrium constants K'. Calculations at this level can also be made on the enzymatic mechanism for a biochemical reaction. Level 3 utilizes reactants at specified T, P, pH, and pMg, but the equilibrium concentrations of certain reactants are also specified. The fundamental equation of thermodynamics is derived here for Level 3. Equilibrium calculations at this level use standard transformed Gibbs energies of formation of reactants at specified concentrations of certain reactants or apparent equilibrium constants K". Level 3 is useful in calculating equilibrium concentrations of reactants that can be reached in a living cell when some of the reactants are available at steady-state concentrations. Calculations at all three levels are facilitated by the use of conservation matrices and stoichiometric number matrices for systems. Three cases involving glucokinase, glucose-6-phosphatase, and ATPase are discussed.  相似文献   

5.
The use of G' in discussing the thermodynamics of biochemical reactions at a specified pH and pMg is justified by use of a Legendre transform of the Gibbs energy G. When several enzymatic reactions occur simultaneously in a system, the standard transformed Gibbs energies of reaction delta rG'0 can be used in a computer program to calculate the equilibrium composition that minimizes the transformed Gibbs energy at the specified pH and pMg. The calculation of standard transformed Gibbs energies of formation of reactants at pH 7 and pMg 3 is described. In addition a method for calculating the equilibrium concentrations of reactants is illustrated for a system with steady state concentrations of some reactants like ATP and NAD.  相似文献   

6.
It is of interest to calculate equilibrium compositions of systems of biochemical reactions at specified concentrations of coenzymes because these reactants tend to be in steady states. Thermodynamic calculations under these conditions require the definition of a further transformed Gibbs energy G" by use of a Legendre transform. These calculations are applied to the pyruvate dehydrogenase reaction plus the citric acid cycle, but steady-state concentrations of CoA, acetyl-CoA and succinyl-CoA cannot be specified because they are involved in the conservation of carbon atoms. These calculations require the use of linear algebra to obtain further transformed Gibbs energies of formation of reactants and computer programs to calculate equilibrium compositions. At specified temperature, pH, ionic strength and specified concentrations of several coenzymes, the equilibrium composition depends on the specified concentrations of the coenzymes and the initial amounts of reactants.  相似文献   

7.
Gibbs free energy is the thermodynamic potential representing the fundamental equation at constant temperature, pressure, and molar amounts. Transformed Gibbs energies are important for biochemical systems because the local concentrations within cell compartments cannot yet be determined accurately. The method of Constrained Gibbs Energies adds kinetic reaction extent limitations to the internal constraints of the system thus extending the range of applicability of equilibrium thermodynamics from predefined constraints to dynamic constraints, e.g., adding time-dependent constraints of irreversible chemical change. In this article, the implementation and use of Transformed Gibbs Energies in the Gibbs energy minimization framework is demonstrated with educational examples. The combined method has the advantage of being able to calculate transient thermodynamic properties during dynamic simulation.  相似文献   

8.
R A Alberty  R N Goldberg 《Biochemistry》1992,31(43):10610-10615
The criterion for chemical equilibrium at specified temperature, pressure, pH, concentration of free magnesium ion, and ionic strength is the transformed Gibbs energy, which can be calculated from the Gibbs energy. The apparent equilibrium constant (written in terms of the total concentrations of reactants like adenosine 5'-triphosphate, rather than in terms of species) yields the standard transformed Gibbs energy of reaction, and the effect of temperature on the apparent equilibrium constant at specified pressure, pH, concentration of free magnesium ion, and ionic strength yields the standard transformed enthalpy of reaction. From the apparent equilibrium constants and standard transformed enthalpies of reaction that have been measured in the adenosine 5'-triphosphate series and the dissociation constants of the weak acids and magnesium complexes involved, it is possible to calculate standard Gibbs energies of formation and standard enthalpies of formation of the species involved at zero ionic strength. This requires the convention that the standard Gibbs energy of formation and standard enthalpy of formation for adenosine in dilute aqueous solutions be set equal to zero. On the basis of this convention, standard transformed Gibbs energies of formation and standard transformed enthalpies of formation of adenosine 5'-trisphosphate, adenosine 5'-diphosphate, adenosine 5'-monophosphate, and adenosine at 298.15 K, 1 bar, pH = 7, a concentration of free magnesium ions of 10(-3) M, and an ionic strength of 0.25 M have been calculated.  相似文献   

9.
Abstract

A modification of the Gibbs ensemble Monte Carlo computer simulation method for fluid phase equilibrium is described. The modification, which is based on the assumption of a thermodynamic model for the vapor phase, reduces the computational time for the simulation as compared to the original Gibbs ensemble methods. Since the computational time is largely proportional to the number of particle-particle interactions, avoiding the direct simulation of the vapor phase typically leads to a thirty to forty percent reduction in computational time. For a pure Leonard-Jones-(12,6) fluid the results obtained at moderate reduced temperatures, T/Tc < 0.8, are in good agreement with the full Gibbs ensemble method.  相似文献   

10.
Apparent equilibrium constants K' of biochemical reactions at pH 7 and standard apparent reduction potentials of half reactions at pH 7 can be calculated using a table of standard transformed Gibbs energies of formation Delta(f)G'(0) at pH 7. A table is provided for 136 reactants at 25 degrees C, pH 7, and ionic strengths of 0, 0.10, and 0.25 M. Examples are given to illustrate the use of the table.  相似文献   

11.
David C  Foley S  Mavon C  Enescu M 《Biopolymers》2008,89(7):623-634
The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.  相似文献   

12.
Water plays a role in the thermodynamics of dilute aqueous solutions that is unusual in two ways. First, knowledge of hydration equilibrium constants of species is not required in calculations of thermodynamic properties of biochemical reactants and reactions at specified pH. Second, since solvent provides an essentially infinite source of oxygen atoms in a reaction system where water is a reactant, oxygen atoms are not conserved in the reaction system in dilute aqueous solutions. This is related to the fact that H2O is omitted in equilibrium expressions for dilute aqueous solutions. Calculations of the standard transformed Gibbs energies of formation of total carbon dioxide and total ammonia at specified pH are discussed, and the average bindings of hydrogen ions by these reactants are calculated by differentiation. Since both of these reactants are involved in the urease reaction, the apparent equilibrium constants and changes in the numbers of hydrogen ions bound are calculated for this reaction as functions of pH.  相似文献   

13.
Standard apparent reduction potentials are important because they give a more global view of the driving forces for redox reactions than do the standard transformed Gibbs energies of formation of the reactants. This paper emphasizes the effects of pH on biochemical half reactions in the range pH 5 to 9, but it also shows the effect of ionic strength. These effects can be calculated if the pKs of acid groups in the reactants are known in the range pH 4 to 10. Raising the pH decreases the standard apparent reduction potentials of half reactions when it has an effect, and the slope is proportional to minus one times the ratio of the change in binding of hydrogen ions in the half reaction to the number of electrons transferred. These effects are discussed for 19 biochemical reactions. This effect is most striking for the nitrogenase reaction, where the apparent equilibrium constant is proportional to 10(-10 pH) and is unfavorable for nitrogen fixation above pH 8.  相似文献   

14.
When a reaction system described in terms of species is in a certain state, the Gibbs energy G provides the means for determining whether each reaction will go to the right or the left, and the equilibrium composition of the whole system can be calculated using G. When the pH is specified, a system of biochemical reactions is described in terms of reactants, like ATP (a sum of species), and the transformed Gibbs energy G' provides the means for determining whether each reaction will go to the right or the left. The equilibrium composition of the whole system can be calculated using G'. Since metabolism is complicated, the thermodynamics of systems of reactions like glycolysis and the citric acid cycle can also be considered at specified concentrations of coenzymes like ATP, ADP, NAD(ox), and NAD(red). This is of interest because coenzymes tend to be in steady states because they are involved in many reactions. When the concentrations of coenzymes are constant, the further transformed Gibbs energy G" provides the means for calculating whether each reaction will go to the right or the left, and the equilibrium composition of the whole system can be calculated using G". Under these conditions, a metabolic reaction system can be reconceptualized in terms of sums of reactants; for example, glycolysis can be represented by C(6)=2C(3), where C(6) is the sum of the reactants with six carbon atoms and C(3) is the sum of the reactants with three carbon atoms. These calculations can also be described by use of semigrand partition functions. Semigrand partition functions have the advantage of containing all the thermodynamic information on a series of reactions at specified pH or at specified pH and specified concentrations of coenzymes.  相似文献   

15.
Standard Gibbs energies of reactions are increasingly being used in metabolic modeling for applying thermodynamic constraints on reaction rates, metabolite concentrations and kinetic parameters. The increasing scope and diversity of metabolic models has led scientists to look for genome-scale solutions that can estimate the standard Gibbs energy of all the reactions in metabolism. Group contribution methods greatly increase coverage, albeit at the price of decreased precision. We present here a way to combine the estimations of group contribution with the more accurate reactant contributions by decomposing each reaction into two parts and applying one of the methods on each of them. This method gives priority to the reactant contributions over group contributions while guaranteeing that all estimations will be consistent, i.e. will not violate the first law of thermodynamics. We show that there is a significant increase in the accuracy of our estimations compared to standard group contribution. Specifically, our cross-validation results show an 80% reduction in the median absolute residual for reactions that can be derived by reactant contributions only. We provide the full framework and source code for deriving estimates of standard reaction Gibbs energy, as well as confidence intervals, and believe this will facilitate the wide use of thermodynamic data for a better understanding of metabolism.  相似文献   

16.
17.
Amyloid deposits are frequently formed by mutant proteins that have a lower stability than the wild-type proteins. Some reports, however, have shown that mutant-induced thermodynamic destabilization is not always a general mechanism of amyloid formation. To obtain a better understanding of the mechanism of amyloid fibril formation, we show in this study that equilibrium and kinetic refolding-unfolding reaction experiments with two amyloidogenic mutant human lysozymes (I56T and D67H) yield folding pathways that can be drawn as Gibbs energy diagrams. The equilibrium stabilities between the native and denatured states of both mutant proteins were decreased, but the degrees of instability were different. The Gibbs energy diagrams of the folding process reveal that the Gibbs energy change between the native and folding intermediate states was similar for both proteins, and also that the activation Gibbs energy change from the native state to the transition state decreased. Our results confirm that the tendency to favor the intermediate of denaturation facilitates amyloid formation by the mutant human lysozymes more than equilibrium destabilization between the native and completely denatured states does.  相似文献   

18.
The standard Gibbs energies of formation of species in the guanosine triphosphate and the xanthosine triphosphate series have been calculated on the basis of the convention that the standard Gibbs energy of formation for the neutral form of guanosine is equal to zero in aqueous solution at 298.15 K and zero ionic strength. This makes it possible to calculate apparent equilibrium constants for a number of enzyme-catalyzed reactions for which apparent equilibrium constants have not been measured or cannot be measured directly because they are too large. The eventual elimination of this convention is discussed. This adds ten reactants to the database BasicBiochemData3 that has 199 reactants. The standard transformed Gibbs energies of formation of these ten reactants are used to calculate apparent equilibrium constants at 298.15 K, 0.25 M ionic strength, and pHs 5, 6, 7, 8, and 9. The pKs, standard Gibbs energies of hydrolysis, and standard Gibbs energies of deamination are given for the reactants in the ATP, IMP, GTP, and XTP series.  相似文献   

19.
The best way to store data on apparent equilibrium constants for enzyme-catalyzed reactions is to calculate the standard Gibbs energies of formation of the species involved at 298.15 K and zero ionic strength so that equilibrium constants can be calculated at the desired pH and ionic strength. These calculations are described for CoA, acetyl-CoA, oxalyl-CoA, succinyl-CoA, methylmalonyl-CoA, malyl-CoA and CoA-glutathione. The species properties are then used to calculate standard transformed Gibbs energies of formation for these reactants as functions of pH at ionic strength 0.25 M. The species data also make it possible to calculate apparent equilibrium constants of 23 enzyme-catalyzed reactions as a function of pH, including some that cannot be determined directly because they are so large.  相似文献   

20.
The standard Gibbs energies of formation of species in the cytidine triphosphate series, uridine triphosphate series, and thymidine triphosphate series have been calculated on the basis of the convention that Delta(f)G=0 for the neutral form of cytidine in aqueous solution at 298.15 K at zero ionic strength. This makes it possible to calculate apparent equilibrium constants for a number of reactions for which apparent equilibrium constants have not been measured or cannot be measured because they are too large. This paper adds fifteen reactants to the database BasicBiochemData3 at MathSource that includes 199 reactants. The standard transformed Gibbs energies of formation of these fifteen reactants are used to calculate apparent equilibrium constants at 298.15 K, ionic strength 0.25 M, and pHs 5, 6, 7, 8, and 9 for thirty two reactions. The pKs, standard Gibbs energies of hydrolysis, and standard Gibbs energies of deamination are given for these fifteen reactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号