首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol stimulates glycogenolysis in livers from fed rats.   总被引:2,自引:0,他引:2  
To determine the reason for the lack of a hypoglycemic effect of ethanol in the fed state, the effect of ethanol on glucose turnover, liver glycogenolysis, and glucose metabolites was determined. Chronically catheterized awake and freely moving fed rats received either ethanol (blood ethanol, 37 +/- 10 mmol/liter, n = 11) or saline (n = 13) intravenously for 4 hr. Glucose turnover was determined using a primed continuous infusion of [3-3H]glucose. The liver was freeze clamped at 4 hr for glycogen and metabolite measurements. Plasma glucose (5.8 +/- 0.3 mmol/liter vs 6.3 +/- 0.2 mmol/liter at 4 hr, ethanol versus saline) and the rate of glucose turnover (61 +/- 9 vs 58 +/- 8 moles/kg.min) were similar during the ethanol and saline infusions. Plasma lactate was significantly higher in the ethanol (1.32 +/- 0.05 mmol/liter) than in the saline (0.86 +/- 0.06 mmol/liter, P less than 0.001) study. Concentrations of gluconeogenic intermediates in the liver (glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, and pyruvate) were all significantly and -30% lower in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol (0.38 +/- 0.03 mmol/liter) and saline (0.37 +/- 0.04 mmol/liter) studies. Liver glycogen was 75% lower in the ethanol-infused (61 +/- 9 mmol/kg dry wt) than the saline (242 +/- 27 mmol/kg dry wt, P less than 0.001)-infused rats. These data demonstrate that in fed rats given ethanol, glucose turnover is maintained constant by accelerated glycogenolysis. Thus, inhibition of gluconeogenesis by ethanol does not lower hepatic glucose production unless compensatory glycogenolysis can be prevented.  相似文献   

2.
We investigated the involvement of carbonic anhydrase (CA) in mediating V-H(+)-ATPase translocation into the basolateral membrane in gills of alkalotic Squalus acanthias. Immunolabeling revealed that CA is localized in the same cells as V-H(+)-ATPase. Blood plasma from dogfish injected with acetazolamide [30 mg/kg at time (t) = 0 and 6 h] and infused with NaHCO(3) for 12 h (1,000 microeq.kg(-1).h(-1)) had significantly higher plasma HCO(3)(-) concentration than fish that were infused with NaHCO(3) alone (28.72 +/- 0.41 vs. 6.57 +/- 2.47 mmol/l, n = 3), whereas blood pH was similar in both treatments (8.03 +/- 0.11 vs. 8.04 +/- 0.11 pH units at t = 12 h). CA inhibition impaired V-H(+)-ATPase translocation into the basolateral membrane, as estimated from immunolabeled gill sections and Western blotting on gill cell membranes (0.24 +/- 0.08 vs. 1.00 +/- 0.28 arbitrary units, n = 3; P < 0.05). We investigated V-H(+)-ATPase translocation during a postfeeding alkalosis ("alkaline tide"). Gill samples were taken 24-26 h after dogfish were fed to satiety in a natural-like feeding regime. Immunolabeled gill sections revealed that V-H(+)-ATPase translocated to the basolateral membrane in the postfed fish. Confirming this result, V-H(+)-ATPase abundance was twofold higher in gill cell membranes of the postfed fish than in fasted fish (n = 4-5; P < 0.05). These results indicate that 1) intracellular H(+) or HCO(3)(-) produced by CA (and not blood pH or HCO(3)(-)) is likely the stimulus that triggers the V-H(+)-ATPase translocation into the basolateral membrane in alkalotic fish and 2) V-H(+)-ATPase translocation is important for enhanced HCO(3)(-) secretion during a naturally occurring postfeeding alkalosis.  相似文献   

3.
A fluorimetric assay for D-lactate in human blood samples was developed using an endpoint enzymatic assay with D-lactate dehydrogenase from Staphylococcus epidermidis. The intrabatch and interbatch coefficients of variance were 8.7% (n = 4) and 16.6% (n = 4), respectively. The limit of detection in blood was 3.73 nmol/ml. The assay suffers minor interference from S-D-lactoylglutathione, which was also present in the blood samples. The concentration of D-lactate in blood was (mean +/- SE, nmol/ml) normal healthy individuals, 11.0 +/- 1.2 (n = 7); and diabetic patients, 20.0 +/- 1.3 (n = 55) (a significant increase in diabetes mellitus; P < 0.01, Mann-Whitney U test).  相似文献   

4.
Livers from fed, fasted (48 h) and glucose-fed rabbits were preserved for 24 and 48 h by either simple cold storage (CS) or continuous machine perfusion (MP) with the University of Wisconsin preservation solutions. After preservation liver functions were measured by isolated perfusion of the liver (at 37 degrees C) for 2 h. Fasting caused an 85% reduction in the concentration of glycogen in the liver but no change in ATP or glutathione. Glucose feeding suppressed the loss of glycogen (39% loss). After 24 h preservation by CS livers from fed or fasted animals were similar including bile production (6.2 +/- 0.5 and 5.6 +/- 0.4 ml/2 h, 100 g, respectively), hepatocellular injury (LDH release = 965 +/- 100 and 1049 +/- 284 U/liter), and concentrations of ATP (1.17 +/- 0.15 and 1.18 +/- 0.04 mumol/g, glutathione (1.94 +/- 0.51 and 2.35 +/- 0.26 mumol/g, respectively), and K:Na ratio (6.7 +/- 1.0 and 7.7 +/- 0.5, respectively). After 48 h CS livers from fed animals were superior to livers from fasted animals including significantly more bile production (5.0 +/- 0.9 vs 2.0 +/- 0.3 ml/2 h, 100 g), less LDH release (1123 +/- 98 vs 3701 +/- 562 U/liter), higher concentration of ATP (0.50 +/- 0.16 vs 0.33 +/- 0.07 mumol/g) and glutathione (0.93 +/- 0.14 vs 0.30 +/- 0.13 mumol/g), and a larger K:Na ratio (7.4 vs 1.5). Livers from fed animals were also better preserved than livers from fasted animals when the method was machine perfusion. The decrease in liver functions in livers from fasted animals preserved for 48 h by CS or MP was prevented by feeding glucose. Glucose feeding increased bile formation after 48 h CS preservation from 2.0 +/- 0.3 (fasted) to 6.9 +/- 1.2 ml/2 h, 100 g; LDH release was reduced from 3701 +/- 562 (fasted) to 1450 +/- 154 U/liter; ATP was increased from 0.33 +/- 0.07 (fasted) to 1.63 +/- 0.18 mumol/g; glutathione was increased from 0.30 +/- 0.01 (fasted) to 2.17 +/- 0.30 mumol g; and K:Na ratio was increased from 1.5 +/- 0.9 to 5.3 +/- 1.0. This study shows that the nutritional status of the donor can affect the quality of liver preservation. The improvement in preservation by feeding rabbits only glucose suggests that glycogen is an important metabolite for successful liver preservation. Glycogen may be a source for ATP synthesis during the early period of reperfusion of preserved livers.  相似文献   

5.
6.
K(+)- and Na(+)-selective double-barrelled microelectrodes were used for intracellular and luminal measurements in salivary ducts of Periplaneta americana. The salivary ducts were stimulated with dopamine (10(-6) mol l(-1)). Dopamine decreased intracellular [K(+)] from 112+/-17 mmol l(-1) to 40+/-13 mmol l(-1) (n=6) and increased intracellular [Na(+)] from 22+/-19 mmol l(-1) to 92+/-4 mmol l(-1) (n=6). Luminal [K(+)] was 15+/-3 mmol l(-1) in the unstimulated salivary ducts and increased to 26+/-11 mmol l(-1) upon stimulation with dopamine (n=10). Luminal [Na(+)] was insignificantly increased from 105+/-25 mmol l(-1) to 116+/-22 mmol l(-1) (n=12) by stimulation with dopamine. The potential difference across the basolateral membrane (PD(b)) was depolarized from -65+/-6 mV to -31+/-13 mV (n=12) and the transepithelial potential difference (PD(t)) was hyperpolarized from -13+/-6 mV to -22+/-7 mV (n=22, lumen negative) upon stimulation with dopamine. The re-establishment of prestimulus values of intracellular [K(+)] and [Na(+)] and PD(b) was inhibited by basolateral addition of ouabain (10(-4) mol l(-1)). Furosemide (10(-4) mol l(-1)) in the bath inhibited the dopamine-induced increase in intracellular [Na(+)], the decrease in intracellular [K(+)] and the depolarization of PD(b). We propose a model for dopamine-stimulated ion transport in the salivary ducts involving basolateral Na(+)-K(+)-2Cl(-) cotransport and active extrusion of K(+) via the apical membrane.  相似文献   

7.
The effect of the cytoprotective bile acid tauroursodeoxycholic acid (TUDCA) on basal cytosolic free Ca++ (Ca++)i and receptor-mediated (Ca++)i increase was studied in human polymorphonuclear neutrophils using the fluorescent dye quin2. Basal levels of (Ca++)i were 96 +/- 6 nmol/l (mean +/- SEM, n = 48). TUDCA and its cytotoxic epimer taurochenodeoxycholic acid (TCDCA) at 500 mumols/l increased (Ca++)i by 31 +/- 12 and 27 +/- 7 nmol/l, respectively (n = 6, p less than 0.05). Stimulation of neutrophils with the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP; 10(-7) mol/l) induced a (Ca++)i increase of 200 +/- 32 nmol/l which was inhibited after preincubation with TUDCA (500 mumols/l) or TUDCA + TCDCA (500 mumols/l, each) by 60.1% and 59.5%, respectively, but not with TCDCA (500 mumols/l) alone. The inhibitory effect of TUDCA on FMLP-induced (Ca++)i increase was strongly concentration-dependent and was nearly complete at 1000 mumols/l. Since (Ca++)i is discussed as a mediator of cellular injury we hypothesize that TUDCA may exert its protective effects at least partly via inhibition of (Ca++)i-mediated cytotoxic processes.  相似文献   

8.
The effects of acute and chronic treatment with ethanol on transport of reducing equivalents into mitochondria via the malate-aspartate shuttle were studied in perfused rat liver. The shuttle capacity was estimated from the decrease in rates of glucose production from the reduced substrate sorbitol caused by an increase in the NADH/NAD+ ratio in the cytosol due to metabolism of ethanol. The greater the capacity of the malate-aspartate shuttle, the smaller the inhibition of glucose synthesis by ethanol. Glucose synthesis was decreased about 2-fold less in livers from fasted rats treated acutely 2.5 h earlier with ethanol than in untreated controls. Chronic treatment with ethanol for 3-5 weeks prevented completely the decrease in glucose synthesis from sorbitol due to ethanol oxidation. Rates of ethanol uptake were elevated significantly from 69 +/- 7 mumols/g/h in livers from control rats up to 92 +/- 7 mumols/g/h in livers from SIAM rats. Similarly, rates of ethanol uptake were stimulated by chronic ethanol treatment from 71 +/- 6 to 222 +/- 15 mumols/g/h; this increase was largely sensitive to aminooxyacetate. Taken together, these data indicate that flux of reducing equivalents over the malate-aspartate shuttle is increased by both acute and chronic treatment with ethanol and that movement of reducing equivalents from the cytosol into the mitochondria via the malate-aspartate shuttle is an important rate determinant in hepatic ethanol oxidation.  相似文献   

9.
Five men were studied during exercise to exhaustion on an electrically braked cycle ergometer at 70% of VO2max. The four experimental treatments were as follows: fasted for 36 h (A); fasted (36 h) and refed with glucose (B) or glycerol (C); postabsorptive (overnight fast, D). In B and C the subjects were given a drink containing glucose or glycerol (1g per kg body weight) 45 min before starting exercise. A placebo drink was given 45 min before exercise on treatments A and D. Despite an increased availability of circulating free fatty acids, beta-hydroxybutyrate and glycerol exercise time to exhaustion was significantly lower after fasting (treatment A 77.7 +/- 6.8 min) compared with treatment D (119.5 +/- 5.8 min). Refeeding with glucose or glycerol did not significantly improve performance (92.4 +/- 11.8 min and 80.8 +/- 3.6 min respectively) compared with treatment A and lowered circulating levels of FFA and beta-HB during exercise compared with A. Despite the probability of low liver glycogen levels after fasting, none of the subjects became hypoglycaemic (blood glucose less than 4 mmol.l-1) during exercise and their blood lactate concentrations were not high at exhaustion. Plasma levels of branched chain amino acids (BCAA) decreased progressively during exercise on treatments A, B and C and were considerably lower at exhaustion compared with treatment D. Falling plasma concentrations of BCAA during prolonged exercise may be implicated in the generation of central fatigue.  相似文献   

10.
The metabolic and hormonal response to short term fasting was studied after endurance exercise training. Rats were kept running on a motor driven rodent treadmill 5 days/wk for periods up to 1 h/day for 6 wk. Trained and untrained rats were then fasted for 24 h and 48 h. Liver and muscle glycogen, blood glucose, lactate, beta OH butyrate, glycerol, plasma insulin, testosterone and corticosterone were measured in fed and fasted trained and untrained rats. 48 h fasted trained rats show a lower level of blood lactate (1.08 +/- 0.05 vs 1.33 +/- 0.08 mmol/l-1 of blood glycerol (1 +/- 0.11 vs 0.84 +/- 0.08 mmol/l-1), and of muscle glycogen. There is a significant increase in plasma corticosterone in 48 h fasted trained rats from fed values. Plasma testosterone decreases during fasting, the values are higher in trained rats. Plasma insulin decreases during fasting without any difference between the two groups. These results show higher lipolysis, and decreased glycogenolysis in trained animals during 48 h fasting. The difference between the groups in steroid hormone response could reduce neoglucogenesis and muscle proteolysis in trained animals.  相似文献   

11.
Liver and skeletal muscle triglyceride stores are elevated in type 2 diabetes and correlate with insulin resistance. As postprandial handling of dietary fat may be a critical determinant of tissue triglyceride levels, we quantified postprandial fat storage in normal and type 2 diabetes subjects. Healthy volunteers (n = 8) and diet-controlled type 2 diabetes subjects (n = 12) were studied using a novel 13C magnetic resonance spectroscopy protocol to measure the postprandial increment in liver and skeletal muscle triglyceride following ingestion of 13C-labeled fatty acids given with a standard mixed meal. The postprandial increment in hepatic triglyceride was rapid in both groups (peak increment controls: +7.3 +/- 1.5 mmol/l at 6 h, P = 0.002; peak increment diabetics: +10.8 +/- 3.4 mmol/l at 4 h, P = 0.009). The mean postprandial incremental AUC of hepatic 13C enrichment between the first and second meals (0 and 4 h) was significantly higher in the diabetes group (6.1 +/- 1.4 vs. 1.7 +/- 0.6 mmol x l(-1) x h(-1), P = 0.019). Postprandial increment in skeletal muscle triglyceride in the control group was small compared with the diabetic group, the mean 24-h postprandial incremental AUC being 0.2 +/- 0.3 vs. 1.7 +/- 0.4 mmol x l(-1) x h(-1) (P = 0.009). We conclude that the postprandial uptake of fatty acids by liver and skeletal muscle is increased in type 2 diabetes and may underlie the elevated tissue triglyceride stores and consequent insulin resistance.  相似文献   

12.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

13.
The effect of a high-carbohydrate meal 4 h before 105 min of exercise at 70% of maximal O2 uptake was determined in seven endurance-trained cyclists and compared with exercise following a 16-h fast. The preexercise meal produced a transient elevation of plasma insulin and blood glucose, which returned to fasting basal levels prior to the initiation of exercise. The meal also resulted in a 42% elevation (P less than 0.05) of glycogen within the vastus lateralis at the beginning of exercise. The 1st h of exercise when subjects were fed was characterized by a 13-25% decline (P less than 0.05) in blood glucose concentration, a suppression of the normal increase in plasma free fatty acids and blood glycerol, and a 45% (P less than 0.05) greater rate of carbohydrate oxidation compared with exercise when subjects were fasted. After 105 min of exercise, there were no significant differences when subjects were fed or fasted regarding blood glucose levels, rate of carbohydrate oxidation, or muscle glycogen concentration. The greater muscle glycogen utilization (97 +/- 18 vs. 64 +/- 8 mmol glucosyl units X kg-1; P less than 0.05) and carbohydrate oxidation when subjects were fed appeared to be derived from the glycogen synthesized following the meal. These results indicate that preexercise feedings alter substrate availability despite a return of plasma insulin to fasting levels prior to exercise and that these effects persist until the 2nd h of exercise.  相似文献   

14.
The effect of energy status on the response of luteinizing hormone (LH) pulse frequency to acute short-term energy deficiency created by fasting in estradiol-treated ovariectomized Shiba goats was studied in two experiments. In experiment 1, eight goats whose mean body weight (BW) was 25.6 +/- 5.8 (mean +/- S.D.)kg were fed 500 g hay cubes daily for 1 week. Then they were fasted for 3 days. Blood samples were collected for 4 h at 6 min intervals on the last day of feeding, first, second and third day of fasting for LH analysis. The goats were divided into light (<24 kg, n = 4) and heavy (> or =24 kg, n = 4) groups for data analysis. There was no difference in LH pulse frequency between the last day of feeding and each day of fasting in the heavy group. LH pulse frequency was significantly (P < 0.05) suppressed on the second day (3.3 +/- 1.3 pulses/4 h) and on the third day (2.3 +/- 1.9 pulses/4 h) relative to the day prior to fasting (4.8 +/- 1.5 pulses/4 h) in the light group. In experiment 2, BW plus a body mass index (gBMI: (body weight (kg)/withers height (m)/body length (m)) x 10) were measured to define energy status. Nine goats (BW, 25.6 +/- 5.8 kg) were fed 500 g hay cubes daily for a week and then fasted for 3 days. Then they were divided into two groups offered either a maintenance (n = 4) or a restricted (n = 5) level of feeding for 4 weeks. The restricted level of feeding was 30% of maintenance requirement based on the BW recorded weekly. The feeding level was then adjusted to maintain BW for a further week followed by 3 day fasting for restricted animals. Blood samples were collected for 6 h at 10 min intervals on the day prior to fasting and on third day of fasting before and after the dietary manipulation. BW (26.6 +/- 2.2 to 26.8 +/- 3.8 kg) and gBMI (8.4 +/- 0.4 to 7.8 +/- 0.3) remained constant over the period prior to fasting for the maintenance animals but were significantly lower (P < 0.05) after 4 weeks for the restricted goats (BW, 26.3 +/- 2.1 to 21.5 +/- 2.4 kg; gBMI, 8.4 +/- 0.9 to 6.9 +/- 0.7). There was no significant difference in the LH pulse frequency between feeding and fasting day in both sampling periods in the maintenance group. In the restricted group, LH pulse frequency was not suppressed by fasting in the first sampling period (6.8 +/- 2.9 to 5.2 +/- 2.5 pulses/6 h), whereas it tended to be suppressed (4.8 +/- 3.1 to 1.6 +/- 2.3 pulses/6 h; P < 0.06) and was significantly (P < 0.05) correlated to body weight (r = 0.70) and gBMI (r = 0.81) after the dietary manipulation. These results suggest that the suppressive effect of short-term energy restriction (fasting) on pulsatile LH secretion is related to body energy status.  相似文献   

15.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

16.
Oxygenation studies with the whole blood of Phrynops hilarii show a P50 of 38 torr at extracellular pH (pHe) of 7.4 which corresponds to an intracellular pH (pHi) of 7.05 at 25 degrees C. The blood CO2 Bohr effect was -0.56 when related to pHi. pHi is related to pHe by the following equation: pHi = 0.75.pHe + 1.54 (r = 0.99); pHi = 0.72. pHe + 1.72 (r = 0.96) at 10 and 25 degrees C respectively. Blood pHe, for 25 degrees C, was 7.519 +/- 0.254 (n = 6). Blood gas partial pressures were: pCO2 = 25.8 +/- 3.8 torr (n = 6); pO2 = 61.7 +/- 21.2 torr (n = 6). The major red cell phosphates, in mmole/l erythrocytes, n = 6, were: ATP (3.66 +/- 0.86); GTP (0.53 +/- 0.28); 2.3-DPG (0.32 +/- 0.12) and inorganic phosphates (2.00 +/- 0.35). The plasma inorganic ion composition, n = 6, was, in mEq/l: K+ (3.04 +/- 0.40); Na+ (148.4 +/- 12.6); Ca2+ (4.75 +/- 1.32); Cl- (106.6 +/- 5.0). Additional blood parameters of interest (n = 6) were: lactate (2.07 +/- 1.72 mM in plasma); erythrocytes/mm3 (416 X 10(3) +/- 4.6 X 10(3)); leucocytes/mm3 (44636 +/- 2618); haematocrit (%) (14.5 +/- 3.6); haemoglobin, g/dl (3.2 +/- 0.5); plasma protein g/dl (4.4 +/- 0.4); osmolarity (293 +/- 10 mOsm/l). The non-bicarbonate buffer value was -22.6 mmol/kg H2O/pH. For a constant CO2 content, delta pHe/delta t = 0.0141 +/- 0.002 (n = 18) and delta pHi/delta t = 0.0157 +/- 0.003 (n = 18).  相似文献   

17.
Slices of rat aorta were incubated in Krebs-Ringer bicarbonate buffer for measurements of immunoreactive 6-ketoprostaglandin F1 alpha, thromboxane (TX) B2, prostaglandin (PG)E2, and PGF2 alpha, and in Tris buffer (pH 9.3) for determination of prostacyclin (PGI2)-like activity. No significant generation of TXB2, PGE2, or PGF2 alpha by rat aortic tissue could be detected. The time-dependent release of 6-keto-PGF1 alpha Krebs-Ringer bicarbonate buffer closely correlated with PGI2 generation in alkaline Tris buffer. During a 30-min incubation period, 6-keto-PGF1 alpha, release was 79.8 +/- 3.3 pmol/mg at a buffer potassium concentration of 3.9 mmol/liter and significantly increased by 23% to 98.3 +/- 8.5 pmol/mg (P less than 0.025) in the absence of potassium in the incubation medium. A smaller decrease in buffer potassium concentration to 2.1 mmol/liter and an increase to 8.8 mmol/liter did not significantly alter aortic 6-keto-PGF1 alpha release. Changes in the incubation buffer sodium concentration from 144 mmol/liter to either 138 or 150 mmol/liter at a constant potassium concentration of 3.9 mmol/liter did not alter the recovery of 6-keto-PGF1 alpha. Our results support the concept that PGI2 is the predominant product of arachidonic acid metabolism in rat aorta. They further show that PGI2 can be recovered quantitatively as 6-keto-PGF1 alpha under the present in vitro conditions. In addition, this in vitro study points to the potassium ion as a modulator of vascular PGI2 synthesis with a stimulation at low potassium concentrations.  相似文献   

18.
Common map turtles (Graptemys geographica) were collected from a natural underwater hibernaculum in Vermont at monthly intervals during the winter of 1997-1998. Blood was sampled by cardiac puncture and analyzed for pH, PCO(2), PO(2), and hematocrit; separated plasma was tested for Na(+), K(+), Cl(-), total [Ca], total [Mg], [lactate], and osmolality (mOsm kg(-1) H(2)O). Control (eupneic; 1 degrees C) values for pH, PO(2), PCO(2), [HCO(3)(-)], and [lactate] were 7.98 +/- 0.03, 47.4 +/- 18.7, 10.1 +/- 0.7 (mm Hg), 36.1 +/- 0.2 (mmol liter(-1)), and 2.1 +/- 0.1 (mmol liter(-1)), respectively. Between November 1997 and March 1998, ice covered the river and the turtles rested on the substratum, fully exposed to the water, and were apneic. Blood PO(2) was maintained at less than 3 mm Hg (range 0.9 +/- 0.2 to 2.1 +/- 0.7 mm Hg), PCO(2) decreased slightly, plasma [lactate] was <5 mmol liter(-1), and plasma [HCO(3)(-)] decreased significantly. In March [lactate] rose to 7.5 +/- 1.5 mmol liter(-l), but there was no acidemia. Map turtles meet most of their metabolic demand for O(2) via aquatic respiration and tolerate prolonged submergence at 1 degrees C with little change in acid-base or ionic status. The adaptive significance of remaining essentially aerobic during winter is to avoid the life-threatening progressive acidosis that results from anaerobic metabolism. J. Exp. Zool. 286:143-148, 2000.  相似文献   

19.
Radiolabeling of liposomes with 64Cu (t(1/2)=12.7 h) is attractive for molecular imaging and monitoring drug delivery. A simple chelation procedure, performed at a low temperature and under mild conditions, is required to radiolabel preloaded liposomes without lipid hydrolysis or the release of the encapsulated contents. Here, we report a 64Cu postlabeling method for liposomes. A 64Cu-specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N',N'-tetraacetic acid (BAT), was conjugated with an artificial lipid to form a BAT-PEG-lipid. After incorporation of 0.5% (mol/mol) BAT-PEG-lipid during liposome formulation, liposomes were successfully labeled with 64Cu in 0.1 M NH4OAc pH 5 buffer at 35 degrees C for 30-40 min with an incorporation yield as high as 95%. After 48 h of incubation of 64Cu-liposomes in 50/50 serum/PBS solution, more than 88% of the 64Cu label was still associated with liposomes. After injection of liposomal 64Cu in a mouse model, 44+/-6.9, 21+/-2.7, 15+/-2.5, and 7.4+/-1.1 (n=4) % of the injected dose per cubic centimeter remained within the blood pool at 30 min, 18, 28, and 48 h, respectively. The biodistribution at 48 h after injection verified that 7.0+/-0.47 (n=4) and 1.4+/-0.58 (n=3) % of the injected dose per gram of liposomal 64Cu and free 64Cu remained in the blood pool, respectively. Our results suggest that this fast and easy 64Cu labeling of liposomes could be exploited in tracking liposomes in vivo for medical imaging and targeted delivery.  相似文献   

20.
Ten competitive cyclists were exercised to exhaustion to test the potential of a 24-h fast for increasing endurance. One group (n = 4) was tested at an initial intensity of 86% maximum O2 uptake (VO2max) (HI) and a second group (n = 6) at 79% VO2max (MI). Both groups repeated test rides in fasted and normal-diet conditions. Time to fatigue was designated at two points: fatigue 1 occurred when pedal frequency could not be maintained at the initial percent VO2max; fatigue 2 occurred when pedal frequency could not be maintained at a workload of approximately 65% VO2max. In both HI and MI the 24-h fast had no effect on resting muscle glycogen stores but significantly increased plasma free fatty acid (FFA) levels. Despite the increased FFA availability, time to fatigue was reduced in the fasted groups. Fatigue 1 and 2 times (mean +/- SE) for HI-fasted were 42.0 +/- 6.2 and 170.0 +/- 20.4 min, respectively, compared with those of the HI-normal diet of 115.3 +/- 25.6 and 201.0 +/- 14.8 min. Fatigue 1 and 2 times for MI-fasted were 142.0 +/- 19.6 and 167.5 +/- 10.5 min compared with those of the MI-normal diet of 191.3 +/- 25.0 and 214.3 +/- 18.9 min. The cause of fatigue at fatigue 1 was not readily apparent. Fatigue 2 in all groups seemed to be related to hypoglycemia as well as muscle glycogen depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号