首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cleavage of the collagen B chain with cyanogen bromide yields nine peptides which have been isolated and characterized with regard to molecular weight and amino acid composition. The peptides are recovered in equimolar quantities and account for the full amino acid complement of the chain as isolated following limited pepsin digestion of human placental tissue. These data thus confirm the unique composition of the chain and further indicate that the chain has been isolated in essentially pure form. The total number of amino acid residues (1018) observed in the cyanogen bromide peptides of the B chain indicate that it is comparable in length to the previously characterized collagen alpha chains. Thus, the apparent larger size of the B chain noted in previous studies may possibly be attributed to the relatively large quantities of hydroxylysine-linked carbohydrate, but more likely to the increased numbers of large hydrophobic amino acids in the B chain. Although the cyanogen bromide peptide pattern obtained in studies on the B chain serves to differentiate this chain from other known chains, some possible homologies between the B chain peptides and peptides derived from the alpha chains of type I, II, and III collagens are noted.  相似文献   

2.
Electron immunohistochemical studies demonstrate that cultured embryo-derived parietal yolk sac (ED-PYS) carcinoma cells synthesize type IV collagen. This material has been isolated and characterized. The collagen obtained after limited pepsin digestion from the medium in which the cells are grown is composed of homogeneous components with a molecular mass of approximately 95 000 daltons. When chromatographed on (carboxymethyl)cellulose under denaturing conditions, the chains elute as acidic components slightly before the human alpha 1(I) chain and coincident with the position of elution of the pepsin-derived human alpha 1(IV) chain. This analysis indicates the presence of a single type of collagen chain in the pepsin-derived ED-PYS synthesized material. In addition, the profile of cyanogen bromide (CNBr) cleavage products obtained from the pepsin-derived ED-PYS cell collagen chains is essentially identical with that derived from the human alpha 1(IV) chain. Isolation of the medium collagen in the absence of pepsin digestion reveals the presence of two high molecular weight components equivalent in size to procollagen alpha chains. However, both high molecular weight products yield CNBr cleavage products that correspond to those obtained from the pepsin-derived alpha 1(IV) chain. The ED-PYS cell-associated collagens obtained with or without the use of pepsin contain components that are essentially identical with those isolated from the culture-medium collagen. These data provide definitive evidence for the existence of type IV collagen molecules composed solely of alpha 1(IV) procollagen chains and further document the usefulness of ED-PYS cells for investigating the biosynthesis of basement membrane components.  相似文献   

3.
Biosynthetic and structural properties of endothelial cell type VIII collagen   总被引:16,自引:0,他引:16  
A highly unusual endothelial cell collagen (Sage, H., Pritzl, P., and Bornstein, P., (1980) Biochemistry 19, 5747-5755) has been characterized in greater detail. Pulse-chase experiments with bovine aortic endothelial cells revealed two nondisulfide-bonded collagens, of apparent chain Mr = 177,000 and 125,000, with an estimated synthesis and secretion time of 75 min. Stepwise, quantitative processing to stable lower molecular weight forms as described for type I procollagen was not observed. Endothelial collagen was secreted over a temperature range of 24-37 degrees C and, prior to heat denaturation, did not display affinity for a gelatin-binding fragment of fibronectin coupled to Sepharose. The presence of a pepsin-resistant domain (Mr = 50,000) in both the soluble and cell layer-associated forms of this protein was shown by ion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Endothelial collagen was cleaved by vertebrate collagenase into several discrete fragments that differed in molecular weight from the characteristic alpha A and alpha B fragments generated from the interstitial collagens. Nontriple helical domains corresponding to the NH2- and COOH-terminal propeptides of other procollagen types were not found after incubation of endothelial collagen with bacterial collagenase. Additional evidence for the lack of extended noncollagenous sequences was provided by studies with mast cell proteases, which convert native procollagen to collagen but are unreactive toward native interstitial collagens. Endothelial collagen was not cleaved by these enzymes at 37 degrees C, but, as observed for interstitial collagen alpha chains, required prior heating at elevated temperatures for cleavage to occur. In view of this unique set of structural characteristics, and a distribution that is not restricted to the endothelium, we have designated this protein as type VIII collagen.  相似文献   

4.
The collagenous protein synthesized by cultured Chinese hamster lung (CHL) cells and present in the culture medium has been isolated after limited pepsin digestion and differential salt precipitation. Molecular size analysis of this material indicates that the CHL cell medium collagen contains chains which exhibit an apparent molecular mass of approximately 85,000 Da. When chromatographed on CM-cellulose under denaturing conditions, the reduced and alkylated CHL cell medium collagen chains elute slightly after the human alpha1(I) chain but well before the pepsin-derived alpha1(V) chain, which is the constituent chain present in the CHL cell cellular matrix collagen. Analysis of the peptides derived by CNBr cleavage of the CHL medium collagen chains by chromatography on CM-cellulose reveals, however, that these chains contain peptides which correspond both in size and in chemical properties to those derived from the alpha1(V) collagen chain, but clearly lack two peptides (alpha1(V)-CB4 and alpha1(V)-CB5) which are normally present in pepsin-derived alpha1(V) chains. Furthermore, analysis of the CHL cell culture medium collagenous material obtained without pepsin digestion indicates the presence of collagenous chains that exhibit after reduction a molecular mass of approximately 160,000 Da, which is smaller than the proposed size of the pro alpha1(V) collagen chain. These results demonstrate that the collagenous protein present in the culture medium of CHL cells is directly related at the primary structural level to the alpha1(V) collagen chain, and it is postulated that this material represents the large fragment derived from a collagenase cleavage of the [pro alpha1(V)]3 molecules present in the cell layer. Furthermore, these results and previous reports indicate that the only identifiable genetic type of procollagen chain synthesized by this cloned cell line in culture corresponds to the pro alpha1(V) chain.  相似文献   

5.
J Francois 《Biochimie》1985,67(9):1035-1042
The collagen from the mesenteric sheath of the tenebrionid insect Tenebrio molitor was extracted by limited pepsin digestion and purified. This collagen was characterized using CM-cellulose chromatography, sodium-dodecylsulfate disc-gel electrophoresis and aminoacid analysis. This molecule was found to be assembled from three identical alpha chains and could be represented by the formula (alpha) 3. The amino acid composition is characteristic of collagen (one-third glycine, high iminoacid content), with high content of hydroxylysine and low content of alanine. Cyanogen bromide digests of these chains indicated that they are not related to any of the known invertebrate or vertebrate chains of interstitial collagens. The molecular weight (M = 280000D) and length (290 nm) were typical, and the banding patterns of the segment-long-spacing crystallites (SLS) and of the reconstitued fibrils were very similar to type I collagen. The denaturation temperature (Td) was 30.7 degrees C and correlated with the total pyrrolidine content as observed in other collagens (von Hippel & Wong's relation). It was concluded that the collagen from this insect showed the classical biochemical and biophysical features of other invertebrate interstitial "primitive" collagens.  相似文献   

6.
A study was carried out on collagen chains of FBJ virus-induced osteosarcoma. Collagens were extracted from pepsin-digested tissues and fractionated by differential salt precipitation. An acidic 0.7 M NaCl precipitate contained type I, type I trimer and/or type III collagens. Collagen fractions precipitated at acidic 1.2 M NaCl showed features characteristic of type V collagen consisting of three chains (mol. weights of which were 120K, 110K and 100K daltons). None of these chains, however, was identical to any of the B, C or A chains reported by Sage et al. in 1979 (1), judging from amino acid composition, cyanogen bromide cleavage and phosphocellulose chromatography data.  相似文献   

7.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

8.
Collagen was extracted from human adult bone by limited pepsin digestion and collagen types were purified by consecutive salt precipitation first under neutral and then under acid conditions. In SDS/PAGE, all collagen type I preparations showed a protein band [alpha 1s(I)] migrating between alpha 1(I) and alpha 2(I) as well as a band [alpha 2s(I)] migrating in front of alpha 2(I). The collagenous nature of the pepsin-stable alpha 1s(I) protein was clearly demonstrated by digestion with human-leucocyte-derived collagenase, immunoblotting with antibodies against collagen type I and amino acid analysis. Partial amino acid sequencing of alpha 1(I) and alpha 1s(I) identified alpha 1s(I) as a shortened alpha 1(I) chain due to a specific cleavage site between residues Leu95 and Asp96 which is in close vicinity to the hydroxylysine-derived crosslink at position 87. In circular dichroism, the proportion of thermally labile collagen molecules was proportional to the amount of shortened alpha 1(I) and alpha 2(I) chains, respectively. The melting temperature was found to be 36 +/- 0.5 degrees C as judged from circular dichroism and susceptibility to proteolysis. Our data provide clear evidence that a shortened alpha 1-derived collagen chain can be extracted from human adult bone whereas it is hardly found in human skin. The unique cleavage site might provide important information about the collagen I molecule embedded in the calcified matrix of human bone.  相似文献   

9.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A neutral protease has been extracted from the media of cultured metastatic tumor cells and purified approximately 1000 times after sequential ammonium sulfate fractionization, concanavalin A column chromatography, and molecular sieve chromatography. The protease has an apparent molecular weight of 70 000--80 000, is inactive at acid pH, requires trypsin activation, and is inhibited by ethylene-diaminetetraacetic acid but not by phenylmethanesulfonyl fluoride, N-ethylmaleimide, or soybean trypsin inhibitor. The enzyme produces specific cleavage products for both chains of pro type IV collagen isolated without pepsinization and apparently cleaves at one point in a major pepsin-extracted chain of placenta type IV collagen. The partially purified enzyme fails to significantly degrade other collagens or fibronectin under digestion conditions in which specific reaction products are produced for type IV collagen. The existence of this enzyme is significant since previously described animal collagenases fail to degrade type IV collagen. Such a type IV specific collagenase could play a role in tumor invasion and may be secreted by other cells such as endothelial cells, epithelial cells, and immune cells.  相似文献   

11.
R Mayne  M S Vail  E J Miller 《Biochemistry》1978,17(3):446-452
Five different collagen chains and one smaller collagenous fragment have been isolated from the collagens found in the combined cell layer and medium of rhesus monkey aortic smooth muscle cell cultures. The collagen chains which can be identified are alpha1 (III), alpha1(I), alpha2, A and B. The smaller collagenous peptide exhibits an apparent molecular weight of 45 000 and has been designated CP45 (Mayne, R., et al. (1977), Arch. Biochem. Biophys. 181, 462). Smooth muscle cells continue to synthesize the collagens from which these components are derived for at least eight passages in culture. At each passage the alpha1 (III) chain consistently represents about one-half of the total collagen which is recovered after initial fractionation by agarose gel chromatography. The results show that smooth muscle cells derived from rhesus monkey thoracic aorta are phenotypically stable for many generations in vitro.  相似文献   

12.
Collagens collected from the test (the external hard covering of invertebrates) of the sea urchin, Asthenosoma ijimai, were characterized biochemically and immunologically. The amino-acid composition was typical of that of mammalian collagens. Crystals of segment-long-spacing showed that the molecules of sea urchin collagen were 300 nm long. Selective salt precipitation revealed that the collagen has the same solubility characteristics as type I collagen. The collagen was denatured at 23.1 degrees C. Anti-sea urchin collagen antisera were immunologically cross-reacted with collagens of the same species and the starfish Asterina pectinifera. However, the antisera showed no or slight responses to collagens of bovine type I, II, III, IV and V. The collagen molecules contained four alpha-chains, named alpha 1(SU), alpha 2(SU), alpha 3(SU) and alpha 4(SU), respectively. All of the four alpha-chains were eluted in the same fraction on gel filtration chromatography. Chains of alpha 1(SU) and alpha 2(SU) were extracted earlier than alpha 3(SU) and alpha 4(SU) during pepsin digestion. Other biochemical and immunological analyses clearly demonstrated that test of sea urchins contains two genetically different, but biochemically similar, species of collagens, one of which is composed of alpha 1(SU) and alpha 2(SU) chains, and the other of alpha 3(SU) and alpha 4(SU).  相似文献   

13.
Biosynthesis and regulation of type V collagen in diploid human fibroblasts   总被引:11,自引:0,他引:11  
The biosynthesis of type V collagen and its regulation were studied using diploid human gingival fibroblasts. Cells were metabolically labeled with radioactive amino acids and labeled proteins were subjected to limited pepsin digestion, DEAE-cellulose chromatography at 15 degrees C, and polyacrylamide gel electrophoresis. Proteins eluted from DEAE-cellulose columns by 0.25 M NaCl contained a collagen species which was resistant to mammalian collagenase and had alpha chains with hydroxylysine/lysine ratios and CNBr peptide patterns similar to alpha 1(V) and alpha 2(V). Procollagen(V) fractions obtained by DEAE-cellulose chromatography and immunoprecipitates of type V collagen antibody contained polypeptides with Mr = 239,000, 219,000, 198,000, 174,000, 157,000, and 132,000. By comparing the CNBr peptide maps of these proteins with those of standard alpha 1(V) and alpha 2(V) chains, the first three polypeptides were shown to be related to alpha 1(V) and the others to alpha 2(V). It was concluded that the gingival fibroblasts synthesize type V collagen, that the pro alpha 1(V) and the pro alpha 2(V) chains have Mr = 239,000 and 174,000, respectively, and that the alpha 1(V) and alpha 2(V) chains laid in the form of fibrils have Mr = 198,000 and 132,000, respectively. A detectable amount of type V collagen was synthesized only at high cell density, and it was associated with the cell layer. The amount and proportion of type V synthesized were increased when the cells were labeled in the presence of serum, and the increase was accompanied by a decrease in type III. This effect was dependent on serum concentration. Serum obtained from platelet-poor plasma failed to elicit this effect, and it was restored by the addition of platelet-derived growth factor. Platelet-derived growth factor was effective in medium with and without platelet-poor serum. Thus, it appears that platelet-derived growth factor may be an important regulatory factor in the synthesis of types V and III collagens.  相似文献   

14.
J M Seyer  A H Kang 《Biochemistry》1977,16(6):1158-1164
Human liver type III collagen was prepared by limited pepsin digestion, differential salt precipitation, and carboxymethylcellulose chromatography. Cyanogen bromide digestion of purified type III collagen chains yielded nine distinct peptides. Three peptides, alpha1(III)-CB3, alpha1(III)-CB7, and alpha1(III)-CB6, were isolated by carboxymethylcellulose chromatography and Sephadex G-50 SF gel filtration. Automated Edman degradation together with selective hydroxylamine cleavage and chymotrypsin and trypsin digestion enabled determination of their complete amino acid sequence. Compared with type I collagen, the data show tentative homology of alpha1(III)-CB3 with alpha1(I)-CB1, alpha1(I)-CB2, and alpha1(I)-CB4; alpha1(III)-CB7 with alpha1(I)-CB5; and alpha1(III)-CB6 with the amino-terminal portion of alpha1(I)-CB8. Close interspecies homology was found between the sequences presented here with 90 residues of alpha1(III)-CB3 and 26 of alpha1(III)-CB8 of calf aorta. The present study establishes the amino acid sequence of 229 residues near the amino terminus or nearly one-quarter of the type III collagen chains. The disaccharide, Glc-Gal, was convalently bound to hydroxylysine at a position corresponding to the same location in the alpha1(I) chain.  相似文献   

15.
Type IX collagen from chick embryonic cartilage is unique among the collagens in that it contains chondroitin sulfate covalently linked to the alpha 2(IX) polypeptide chain. We have isolated and sequenced the glycosaminoglycan-containing peptide released by collagenase digestion from type IX collagen, labeled biosynthetically with [35SO4] and 3H-aminoacids. This peptide was purified by gel filtration and, following chondroitinase ABC digestion, by reverse-phase high performance liquid chromatography. The amino acid sequence obtained for this peptide has 23 residues, beginning and ending with a collagenous sequence, indicating that it spans an internal noncollagenous domain. Comparison of this sequence with the one predicted from cDNA clone pYN 1738 for the alpha 1(IX)chain and pYN 1731 and pDM 222 for the alpha 2(IX)chain revealed the peptide to be the noncollagenous NC3 domain of alpha 2(IX). The glycosylated sequence Val-Glu-Gly-Ser*-Ala-Asp- of type IX collagen does not have the Ser-Gly normally functioning as the attachment sequence but does have an acidic residue preceding the serine which should improve the acceptability of this sequence for the xylosyltransferase. That it is an adequate acceptor can be inferred from the observation that type IX collagen carries a glycosaminoglycan chain on over 70% of the molecules isolated.  相似文献   

16.
Analyses were made of the minor collagens synthesized by cultures of chondrocytes derived from 14-day chick embryo sterna. Comparisons were made between control cultures, cultures grown for 9 days in 5-bromo-2'-deoxyuridine (BrdU) and clones of chondrocytes grown to senescence. Separation of minor collagens from interstitial collagens was achieved by differential salt precipitation in the presence of carrier collagens in acid conditions. The precipitate at 0.9 M NaCl 0.5 M acetic acid from control cultures was shown by CNBr peptide analysis to contain only the alpha 1(II) chain of type II collagen, whereas after BrdU treatment or growth to senescence synthesis of only alpha 1(I) and alpha 2(I) chains occurred. The synthesis of type III collagen was not detected. Analysis of the precipitate at 2.0 M NaCl, 0.5 M HAc from control cultures demonstrated the synthesis of 1 alpha, 2 alpha and 3 alpha chains together with the synthesis of short chain (SC) collagen of Mr 43000 after pepsin digestion. After BrdU treatment or growth to senescence alpha chains were isolated which possessed the migration positions on polyacrylamide gel electrophoresis (PAGE), or the elution positions on CM-cellulose chromatography, of the alpha 1(V) and alpha 2(V) chains of type V collagen. In addition, for BrdU-treated but not for control cultures, intracellular immunofluorescent staining was observed with a monoclonal antibody which specifically recognizes an epitope present in the triple helix of type V collagen. Synthesis of short chain (SC) collagen was not detected after BrdU treatment or growth to senescence. These results suggest that chick chondrocytes grown in conditions known to cause switching of collagen synthesis from type II to type I collagen also undergo a switch from the synthesis of 1 alpha, 2 alpha and 3 alpha chains to the synthesis of the alpha 1(V) and alpha 2(V) chains of type V collagen. It appears that there are several cartilage-specific collagens which together undergo a regulatory control to the synthesis of collagens typical of other connective tissues.  相似文献   

17.
Non-helical peptide fragments were isolated from rabbit skin collagen after cleavage of alpha chains with cyanogen bromide and proteases. Determination of their amino acid sequence indicated a length of 9, 16 and 25 amino acid residues for the non-helical sequences located in the N-terminal region of alpha2 and alpha1 chain and in the C-terminal region of alpha1 chain, respectively. The C-terminal sequence Tyr-Tyr hitherto considered as the genuine end of collagen alpha1 chain is in part of rabbit collagen extended by two residues, alanine and arginine. Rabbit collagen may differ considerably in its non-helical sequences from other vertebrate collagens, particularly in the C-terminal part. Some but not all of these differences are clustered in areas occupied by antigenic determinants which are recognized in the antibody response of rabbits to rat or calf collagen. On the other hand, a high homology to rabbit collagen, e.g. in the N-terminal region of rat collagen alpha1 chain or calf collagen alpha2 chain, probably prevents immunological recognition by the rabbit. The degree of foreignness alone, however, may not necessarily determine whether a particular non-helical area is able to express immunogenic activity.  相似文献   

18.
Type IV collagen, which has long been assumed to contain two alpha 1(IV) and one alpha 2(IV) chains, also contains alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains. Stoichiometry of collagenous alpha(IV) chains differs among tissues, suggesting the existence of subclasses of type IV collagen, each with a unique chain composition. This study seeks to define, by characterization of subunit compositions of NC1 domain populations, the structural organization of type IV collagen from bovine glomerular basement membrane. NC1 hexamers from type IV collagen were separated on two affinity chromatography columns, one containing monoclonal antibodies to the alpha 3 chain, and another, to the alpha 1 chain. SDS-polyacrylamide gel electrophoresis, immunoblotting, reversed phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay identified three NC1 hexamer populations: 1) a hexamer composed of (alpha 1)2 and (alpha 2)2 homodimers; 2) a hexamer composed of (alpha 3)2 and (alpha 4)2 homodimers; 3) a hexamer containing all four alpha chains connected in heterodimers, alpha 1-alpha 3 and alpha 2-alpha 4. Results suggest that there are two distinct type IV collagen molecules, one composed of alpha 1(IV) and alpha 2(IV) chains and another composed of alpha 3(IV) and alpha 4(IV) chains. Furthermore, polymerization occurs between molecules with the same chain composition and between molecules with different chain composition. Moreover, crosslinking between different alpha chains is restricted, thus limiting the number of possible macromolecular structures.  相似文献   

19.
A collagen fraction representing two-thirds of the collagenous sequences in bovine lens capsules has been isolated following limited pepsin digestion and purified by DEAE- and carboxymethyl-cellulose chromatography in native form. The denaturation products of this collagen contain two types of components. The more acidic components (C and 50K1) are, respectively an α-chain-sized collagenous polypeptide and a mixture of smaller molecular weight proteolytic cleavage products of the C chain. The more basic components (80K and 50K2) represent, respectively, a collagenous polypeptide with an apparent Mr = 80,000 and a mixture of smaller molecular weight components derived through proteolysis of the 80K component. The C chain and 80K components are unique with respect to chromatographic properties, amino acid composition, and cyanogen bromide cleavage products. These data are interpreted to indicate that lens capsule basement membrane collagen molecules collectively contain at least two genetically distinct collagen chains: the C chain representing the collagenous domain of one type of chain and the 80K component representing the major portion of the collagenous domain of a second type of chain, designated the D chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号