首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Investigation of the properties of the binding of the radiolabelled antagonists (125I)-iodohydroxybenzylpindolol, (125I)-iodopindolol, and (125I)-iodocyanopindolol to beta-adrenergic receptors of L6 myoblast membranes revealed that guanine nucleotides caused a 2 to 4.5 fold increase in the apparent affinity of these antagonists. No significant effects of GTP were observed on the density of binding sites determined with each radioligand. GTP, GDP, and GMPPNP were of similar high affinity in producing this effect, while GMP was much less potent, and ATP was without effect. Under similar assay conditions GTP reduced the apparent binding affinity of the agonist isoproterenol for the beta-adrenergic receptors of L6 cells. The results indicate that, contrary to previous observations, guanine nucleotides affect not only the interactions of agonists with beta-adrenergic receptors, but also the interaction of antagonists with these adenylate cyclase-linked receptors.  相似文献   

2.
Highly purified dog heart sarcolemmal membranes, with a content of approximately 5 pmol of muscarinic acetylcholine receptor (mAChR)/mg of protein, were analyzed for mAChR-mediated inhibition of adenylyl cyclase and ligand binding in the absence and the presence of guanine nucleotides. Adenylyl cyclase was found to be coupled to the mAChR, being attenuated approximately 30% in a GTP-dependent manner. Direct binding studies, using 3H-labeled oxotremorine M, showed high affinity binding (apparent KD = 10 nM) that was reduced on nucleotide addition. Dose-response curves for GDP, GTP, and guanyl-5'-yl imidodiphosphate showed them to be equipotent. On the basis of pirenzepine binding, only one type of mAChR, commonly referred to as M2, was detected. Direct binding of [3H]quinuclidinyl benzilate [( 3H]QNB) uncovered 50% more binding sites than 150 nM 3H-labeled oxotremorine M; addition of guanine nucleotides uncovered the existence of positive cooperativity in the binding of [3H]QNB. Agonist displacement curves of [3H]QNB binding, without and with guanine nucleotides, extended over several orders of magnitude, which is inconsistent with single site competitive kinetics. The results and their analysis by computer-assisted curve fitting indicated that the data are well fitted by a model in which a receptor is at least bivalent and exists in two states: one with and the other without cooperativity between its sites, with guanine nucleotides decreasing both the degree of cooperativity between the sites and the proportion of the receptor that is in the cooperative form. Since the guanine nucleotide effect is mediated by the Ni coupling protein, it is suggested that direct binding detects R'Ni complexes (cooperative), R"NiG complexes (cooperative but distinct from R'Ni), and R0 complexes (non-cooperative and unaffected by Ni or NiG), where R = mAChR, Ni = the inhibitory regulatory component of adenylyl cyclase unaffected by guanine nucleotide, and NiG = Ni affected by guanine nucleotide (G).  相似文献   

3.
Abstract: Guanine nucleotides differentiate binding of tritium-labeled agonists and antagonists to rat brain membranes. In the absence of sodium, GTP (50 μM) decreased binding of [3H]-labeled agonists by 20–60% and [3H]-labeled antagonists by 0–20%. In the presence of 100 mM-NaCl, GTP had no effect on antagonist binding, but decreased agonist binding by 60–95%. GMP was less potent than either GTP or GDP in decreasing agonist binding. GTP (50 μM) reduced high-affinity [3H]dihydromorphine sites by 52% and low-affinity sites by 55%. Without sodium, GTP reduced high-affinity [3H]-naloxone sites by 36%; in the presence of 100 mM-NaCl, GTP had no effect on either high- or low-affinity [3H]naloxone sites. GTP increased the association rate of [3H]dihydromorphine twofold and the dissociation rate by fourfold, while having no effect on association or dissociation rates of the antagonist [3H]diprenorphine. The affinities of uniabeled antagonists in inhibiting [3H]-diprenorphine binding were not affected by GTP or sodium, but the affinities of agonists were reduced 40- 120-fold, with met- and leu-enkephalin affinities reduced by the greatest degree. GTP and sodium lowered [3H]dihydromorphine binding in an additive fashion, while divalent cations, especially manganese, reversed the effects of GTP on [3H]-labeled agonist binding by stimulating membrane-bound phosphatases that hydrolyze GTP to GMP and guanosine. These results suggest that by affecting binding of agonists, but not antagonists, GTP may regulate opiate receptor interactions with their physiological effectors.  相似文献   

4.
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist [3H]BK and the antagonist [3H]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for [3H]BK and a Kd of 3.8 nM for the antagonist [3H]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left [3H]NPC17731 binding unaffected, but reduced the receptor affinity for [3H]BK to a Kd of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C. The rank order of the guanosine nucleotides for [3H]BK binding reduction was GTP[gammaS] = Gpp[NH]p > GTP = GDP > GDP[betaS]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed.  相似文献   

5.
Abstract: Agonist, but not antagonist, interactions with histamine H2-receptors labeled by [3H]mepyramine are regulated selectively by sodium, divalent cations, and guanine nucleotides. Sodium decreases the affinity of histamine and the agonist 2-amino-ethylpyridine for [3H]mepyramine sites in guinea pig brain membranes up to 10-fold. The effect of sodium is exerted to a lesser extent by lithium, while potassium and rubidium are much weaker. Guanine nucleotides also decrease the affinity of histamine for H1 binding sites about twofold. GTP and its nonmetabolized analogue GMP-PNP as well as GDP exert similar effects, while GMP, ATP, ADP, and AMP are inactive. The effects of GTP and sodium on histamine interactions with H1-receptors are additive. By contrast, certain divalent cations enhance the potency of histamine at H1-receptors. Manganese is most potent, while magnesium is almost as active as manganese and calcium is essentially inactive. Sodium, divalent cations, and guanine nucleotides have negligible effects on the interactions of antihistamines with H1-receptors.  相似文献   

6.
Opiate receptor binding is regulated by guanine nucleotides differentially for agonists and antagonists. Guanosine-5′-triphosphate (GTP), its stable analogue guanyl-5′-yl-imidodiphosphate (Gpp(NH)p) and GDP inhibit binding of the 3H-agonists dihydromorphine, etorphine and enkephalins but not the 3H-antagonists naloxone or diprenorphine. GMP, ATP, ADP and AMP fail to alter either agonist or antagonist binding. Effects are more pronounced in the presence than in the absence of sodium.  相似文献   

7.
Muscarinic receptor stimulation inhibits cyclic AMP formation in rat atria but not in retina. We compared the properties of the muscarinic receptors in rat atrial and retinal membranes using the antagonist [3H]quinuclidinyl benzilate. In both atria and retina there is a single binding site for antagonists, while agonists appear to interact at two classes of binding sites. Muscarinic receptors in atria and retina have the same apparent affinities for several antagonists and for a series of muscarinic agonists. In both tissues N-ethylmaleimide decreases agonist affinity for the high-affinity binding sites. Muscarinic receptors in atria and retina differ, however, in several properties relating to the proportions of high- and low-affinity agonist sites. First, guanine nucleotides markedly increase the proportion of low-affinity binding sites in atria, but not in retina. Second, for all agonists there are fewer high-affinity binding sites in retina. Third, the "partial agonist" pilocarpine appears to interact with two classes of binding sites in atria, but with only a single class of sites in retina. Our data suggest that muscarinic receptors that inhibit cyclic AMP formation and those that do not share common properties that determine receptor affinity for agonists and classic antagonists. The differences between these receptors are manifest, however, in the effects of guanine nucleotides and the ability of agonists, especially those of low efficacy, to affect the proportion of high- and low-affinity sites and to effect a biological response.  相似文献   

8.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

9.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   

10.
The interactions of dopaminergic agonists and antagonists with binding sites in bovine anterior pituitary membranes have been investigated with radioligand-binding techniques and computer-modeling procedures. 3H-labeled agonist binding is stereospecific, reversible, saturable, and of high affinity. The rank order of catecholamines, phenothiazines, and related drugs in competing for 3H-agonist binding is indicative of interactions with a D-2 dopamine receptor. Both agonist/3H-agonist and antagonist/3H-agonist competition curves are monophasic and noncooperative (nH = 1) with computer analysis indicating a single class of binding sites. Specific 3H-agonist binding can be completely inhibited by guanine nucleotides. GppNHp us the most potent nucleotide followed by GTP and GDP which are equipotent. The equilibrium binding capacity for 3H-labeled antagonists is twice that for 3H-agonists. Unlabeled antagonists inhibit 3H-antagonist binding competitively and exhibit antagonist/3H-antagonist competition curves which model best to a state of homogeneous affinity. In contrast, unlabeled agonists inhibit 3H-antagonist binding in a heterogeneous fashion displaying multiphasic (nH less than 1) competition curves which can be resolved into high and low affinity binding sites. In the presence of saturating concentrations of guanine nucleotides, however, the agonist/3H-antagonist curves model best to a single affinity state which is identical with the low affinity state seen in control curves. The binding data can be explained by postulating two states of the D-2 dopamine receptor, inducible by agonists but not antagonists and modulated by guanine nucleotides.  相似文献   

11.
The efficacy of muscarinic-receptor agonists for stimulation of inositol phosphate formation and Ca2+ mobilization in intact 1321N1 human astrocytoma cells is correlated with their capacity for formation of a GTP-sensitive high-affinity binding complex in membranes from these cells [Evans, Hepler, Masters, Brown & Harden (1985) Biochem. J. 232, 751-757]. These observations prompted the proposal that a guanine nucleotide regulatory protein serves to couple muscarinic receptors to the phospholipase C involved in phosphoinositide hydrolysis in 1321N1 cells. Inositol phosphate (InsP) formation was measured in a cell-free preparation from 1321N1 cells to provide direct support for this idea. The formation of InsP3, InsP2 and InsP1 was increased in a concentration-dependent manner (K0.5 approximately 5 microM) by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in washed membranes prepared from myo-[3H]inositol-prelabelled 1321N1 cells. Both GTP[S] and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) stimulated InsP formation by 2-3-fold over control; GTP, GDP and GMP were much less efficacious. Millimolar concentrations of NaF also stimulated the formation of inositol phosphates in membrane preparations from 1321N1 cells. In the presence of 10 microM-GTP[S], the muscarinic cholinergic-receptor agonist carbachol stimulated (K0.5 approximately 10 microM) the formation of InsP above that achieved with GTP[S] alone. The effect of carbachol was completely blocked by atropine. The order of potency of nucleotides for stimulation of InsP formation in the presence of 500 microM-carbachol was GTP[S] greater than p[NH]ppG greater than GTP = GDP. Pertussis toxin, at concentrations that fully ADP-ribosylate and functionally inactivate Gi (the inhibitory guanine nucleotide regulatory protein), had no effect on InsP formation in the presence of GTP[S] or GTP[S] plus carbachol. These data are consistent with the idea that a guanine nucleotide regulatory protein that is not Gi is involved in receptor-mediated stimulation of InsP formation in 1321N1 human astrocytoma cells.  相似文献   

12.
Abstract: Using a radioligand binding assay, we examined ionic modulation and G protein coupling of neuropeptide FF(NPFF) receptors in membranes of rat brain and spinal cord. We found that NaCl (but not KCl or LiCl) and MgCl2 increased specific 125I-YLFQPQRFamide (125I-Y8Fa) binding to NPFF receptors in both tissues in a dose-dependent manner, with optimal conditions being 60 m M NaCl and 1 m M MgCl2. Guanine nucleotides dose-dependently inhibited specific 125I-Y8Fa binding to rat brain and spinal cord membranes with maximal effects of 64 ± 6 and 71 ± 2%, respectively. The order of potency was nonhydrolyzable GTP analogues > GTP GDP > GMP, ATP. The guanine nucleotide inhibition was observed in the absence and presence of NaCl and MgCl2. The mechanism of inhibition in spinal cord membranes appeared to be a reduction in the number of NPFF receptors; in one experiment, control KD and Bmax values were 0.068 n M and 7.2 fmol/mg of protein, respectively, and with 0.1 μ M guanylylimidodiphosphate the respective values were 0.081 n M and 4.9 fmol/mg, a 32% reduction in receptor number. Similar results were obtained with guanosine 5'-0-(3-thiotriphosphate). Our data suggest that 125I-Y8Fa binding sites in rat CNS are G protein-coupled NPFF receptors regulated by GTP and cations.  相似文献   

13.
Abstract— [3H]Spiperone binding has been used to study neurotransmitter receptors in bovine caudate nucleus in displacement and saturation binding experiments. Displacement curves for several antagonists are biphasic and can be analysed into contributions from dopaminergic and serotonergic sites. Antagonist binding at each class of sites follows the simple mass action equations for binding at a homogeneous set of sites (slope factors close to unity). Agonist displacement curves also indicate complex behaviour, but agonist binding to the dopaminergic sites alone exhibits heterogeneous properties (slope factors less than unity). Saturation binding experiments have been conducted on each class of site, defining dopaminergic binding of [3H]spiperone as that binding displaced by 0.1 m m -dopamine and serotonergic binding as that displaced by 0.3 μ m -mianserin. In each case, a single class of binding sites was detected: the binding parameters derived in this way have been used to calculate the proportions of the two classes of binding site observed in displacement experiments. Good agreement was obtained between calculated and observed values.  相似文献   

14.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

15.
Agonist binding to multiple muscarinic receptors   总被引:3,自引:0,他引:3  
The binding of agonists to muscarinic cholinergic receptors is well described by a binding model of multiple affinity states (superhigh, high, and low) in most central and peripheral tissues. Although previous studies of the influences by divalent cations, guanine nucleotides, and sulfhydryl reagents support the concept that these regulators act through closely related sites to alter the relative proportions of muscarinic agonist affinity states, it has become apparent that muscarinic receptor subtypes (as defined with the nonclassical antagonist pirenzepine) are differentially affected by the regulators. For example, in tissues that have few high-affinity [3H]pirenzepine-binding sites (heart, ileum, cerebellum), magnesium ions promote the formation of a high agonist affinity state, whereas exposure of these tissues to the sulfhydryl reagent N-ethylmaleimide (NEM) or guanine nucleotides promotes the formation of a low agonist affinity state. Conversely, tissues rich in high-affinity [3H]pirenzepine-binding sites (cerebral cortex, corpus striatum, hippocampus) show little, if any, change in agonist binding site affinity when magnesium ions or guanine nucleotides are present. Furthermore, NEM enhances the muscarinic binding site affinity for agonists in these tissues. Taken together, these results support the concept of muscarinic receptor heterogeneity, as proposed from previous physiological studies, and indicate that the aforementioned regulators (guanine nucleotides, magnesium ions, NEM) differentially alter the agonist-binding properties of these muscarinic receptor subtypes.  相似文献   

16.
A convenient, inexpensive assay was developed for measuring relative changes in cyclic GMP in whole mouse neuroblastoma cells (clone NIE 115) based on labelling the cellular GTP pool with [8(-3)H]guanine. The time course of cell labelling and the distribution of radioactivity among possible products were studied; GTP is the only major labelled species. Radioactive cyclic GMP produced from the radioactive GTP on cell stimulation is isolated by column chromatography nad its identity has been rigorously established by paper chromatography and ion-exchange chromatography. The assay was used to study the time course of the cyclic GMP changes that occur after stimulation of neuroblastoma cells with carbamoylcholine and the dependence of the cyclic GMP changes on the carbamoylcholine concentration. The assay gives results comparable with those obtained by using a radioimmunoassay for cyclic GMP and should be applicable to other whole-cell and tissue-slice systems.  相似文献   

17.
5′Xanthylic acid was efficiently converted to 5′guanine nucleotides (5′GMP, 5′GDP, and 5′GTP) without being degraded to guanine via 5′GMP by decoyinine resistant mutants of strain KY 13315 which had been isolated from Brevibacterium ammoniagenes and was practically devoid of 5′nucleotide degrading activity. The concentration of phosphate in the medium showed a profound effect on the ratio of the accumulated 5′guanine nucleotides, making it possible to direct the fermentation towards 5′GMP or 5′GTP. A direct accumulation of 5′guanine nucleotides from carbohydrate was possible by mixed cultivation of a 5′XMP accumulating strain and a 5′XMP converting mutant. A maximum concentration of 9.67 mg of 5′guanine nucleotides per ml was obtained directly from glucose in such a mixed culture.  相似文献   

18.
The neuropeptide bombesin acts on a variety of target cells to stimulate the processes of secretion and cell proliferation. In this study we determined whether bombesin receptors interact with known guanine nucleotide-binding proteins in four different cell types: GH4C1 pituitary cells, HIT pancreatic islet cells, Swiss 3T3 fibroblasts, and rat brain tissue. Maximal concentrations of nonhydrolyzable GTP analogs decreased agonist binding to bombesin receptors in membranes from all four sources. In GH4C1 and HIT cell membranes GTP analogs inhibited bombesin receptor binding with IC50 values of about 0.1 microM, whereas GDP analogs were approximately 10-fold less potent. In contrast, GMP and the nonhydrolyzable ATP analog adenylyl-imidodiphosphate had no effect at 100 microM. Equilibrium binding experiments in GH4C1 and HIT cell membranes indicated a single class of binding sites with a dissociation constant (Kd) for [125I-Tyr4]bombesin of 24.4 +/- 7.0 pM and a binding capacity of 176 +/- 15 fmol/mg protein. Guanine nucleotides decreased the apparent affinity of the receptors without significantly changing receptor number. Consistent with this observation, guanine nucleotides also increased the rate of ligand dissociation. Pretreatment of GH4C1 or HIT cells with either pertussis toxin (100 ng/ml) or cholera toxin (500 ng/ml) for 18 h did not affect agonist binding to membrane bombesin receptors, its regulation by guanine nucleotides, or bombesin stimulation of hormone release. Although pertussis toxin pretreatment has been reported to block bombesin stimulation of DNA synthesis in Swiss 3T3 cells, it did not alter the binding properties of bombesin receptors in Swiss 3T3 membranes or inhibit the rapid increase in intracellular [Ca2+] produced by bombesin in these cells. In summary, our results indicate that the bombesin receptor interacts with a guanine nucleotide-binding protein which exhibits a different toxin sensitivity from those which regulate adenylate cyclase as well as those which couple some receptors to phospholipases.  相似文献   

19.
Transition metal ions, e.g. Mn2+, Ni2+ and Co2+ enhance in vitro agonist binding to muscarinic receptors in mouse cortex or hippocampus. This effect arises mainly from the conversion of low to high affinity binding sites. Binding properties of antagonists in these brain areas, as well as those of both agonists and antagonists of medulla-pons muscarinic receptors, are insensitive to these ions. The induced interconversion can be reversed by either of the following procedures: (i) removal of the ions; (ii) thermal exposure; (iii) addition of micromolar concentrations of guanine nucleotides.  相似文献   

20.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号