首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The kinetics of interaction between the human immunodeficiency virus-1 Rev protein and its RNA target, Rev response element (RRE) RNA was determined in vitro using a biosensor technique. Our results showed that the primary Rev binding site is a core stem-loop RNA molecule of 30 nucleotides that bound Rev at a 1:1 ratio, whereas the 244-nucleotide full-length RRE bound four Rev monomers. At high Rev concentrations, additional binding of Rev to RRE was observed with ratios of more than 10:1. Because RRE mutants that lacked the core binding site and were inactive in vivo bound Rev nonspecifically at these concentrations, the real stoichiometric ratio of Rev-RRE is probably closer to 4:1. Binding affinity of Rev for RRE was approximately 10(-10) M, whereas the affinity for the core RNA was about 10(-11) M, the difference being due to the contribution of low affinity binding sites on the RRE. Mathematical analysis suggested cooperativity of Rev binding, probably mediated by the Rev oligomerization domains. C-terminal deletions of Rev had no effect on RRE binding, but truncation of the N terminus by as few as 11 residues significantly reduced binding specificity. This method was also useful to rapidly evaluate the potential of aminoglycoside antibiotics, to inhibit the Rev-RRE interaction.  相似文献   

2.
Eilatin-containing ruthenium complexes bind to a broad range of different nucleic acids including: calf thymus (CT) DNA, tRNA(Phe), polymeric RNAs and DNAs, and viral RNAs including the HIV-1 RRE and TAR. The nucleic acid specificity of Lambda- and Delta-[Ru(bpy)2eilatin]2+ have been compared to that of the 'free' eilatin ligand, and to the classic intercalating agent ethidium bromide. Interestingly, all four compounds appear to bind to nucleic acids by intercalation, but the trends in nucleic acid binding specificity are highly diverse. Unlike ethidium bromide, both eilatin and the eilatin-containing coordination complexes bind to certain single-stranded RNAs with high affinity (K(d) < or = 1 microM). Eilatin itself is selective for electron-poor polymeric purines, while the eilatin-coordination complexes exhibit preference for the polypyrimidine r(U). These results show how the binding specificity of an intercalating ligand can change upon its incorporation into an octahedral metal complex.  相似文献   

3.
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies.  相似文献   

4.
5.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region in env mRNA (the Rev-responsive element [RRE]) mediates the export of structural mRNAs from the nucleus to the cytoplasm. We demonstrated that unlike HIV-1 Rev, which functions with both the HIV-1 and HIV-2 RREs, HIV-2 Rev functions only with the HIV-2 RRE. Rev-RRE binding studies suggested that the lack of nonreciprocal complementation stems from the inability of HIV-2 Rev to interact with HIV-1 RRE RNA. Maintenance of RNA secondary structure, rather than the primary nucleotide sequence, appeared to be the major determinant for interaction of both HIV-1 and HIV-2 Rev with the HIV-2 RRE. Moreover, the binding domain of the HIV-2 RRE recognized by HIV-1 Rev was dissimilar to the binding domain of the HIV-1 RRE, in terms of both secondary structure and primary nucleotide sequence. Our results support the hypothesis that function of HIV Rev proteins and possibly the functionally similar Rex proteins encoded by the human T-cell leukemia viruses (HTLVs) HTLV-I and HTLV-II is controlled by the presence of RNA secondary structure generated within the RRE RNA.  相似文献   

6.
Interaction of HIV-1 rev response element (RRE) RNA with its cognate protein, Rev, is critical for HIV-1 replication. Understanding the mode of interaction between RRE RNA and ligands at the binding site can facilitate RNA molecular recognition as well as provide a strategy for developing anti-HIV therapeutics. Our approach utilizes branched peptides as a scaffold for multivalent binding to RRE IIB (high affinity rev binding site) with incorporation of unnatural amino acids to increase affinity via non-canonical interactions with the RNA. Previous high throughput screening of a 46,656-member library revealed several hits that bound RRE IIB RNA in the sub-micromolar range. In particular, the lead compound, 4B3, displayed a Kd value of 410?nM and demonstrated selectivity towards RRE. A ribonuclease protection assay revealed that 4B3 binds to the stem-loop structure of RRE IIB RNA, which was confirmed by SHAPE analysis with 234 nt long NL4-3 RRE RNA. Our studies further indicated interaction of 4B3 with both primary and secondary Rev binding sites.  相似文献   

7.
The binding of human immunodeficiency virus type 1 (HIV-1) Rev protein to its viral RNA target, stem-loop IIB (SLIIB) within the Rev Response element (RRE), mediates the export of singly-spliced and unspliced viral mRNA from the nucleus to the cytoplasm of infected cells; this Rev-mediated transport of viral RNA is absolutely required for the replication of infectious virus. To identify important features that influence the binding affinity and specificity of this Rev-RRE interaction, we have characterized the arginine side-chain dynamics of the Rev arginine-rich motif (ARM) while bound to a 34 nt RNA oligomer that corresponds to SLIIB. As the specificity of the Rev-RRE interaction varies with salt concentration, arginine side-chain dynamics were characterized at two different salt conditions. Following NMR measurements of (15)N spin relaxation parameters for the arginine (15)N(epsilon) nuclei, the dynamics of the corresponding N(epsilon)-H(epsilon) bond vectors were interpreted in terms of Lipari-Szabo model-free parameters using anisotropic expressions for the spectral density functions. Results from these analyses indicate that a number of arginine side-chains display a surprising degree of conformational freedom when bound to RNA, and that arginine residues having known importance for specific RRE recognition show striking differences in side-chain mobility. The (15)N relaxation measurements at different salt conditions suggest that the previously reported increase in Rev-RRE specificity at elevated salt concentrations is likely due to reduced affinity of non-specific Rev-RNA interactions. The observed dynamical behavior of the arginine side-chains at this protein-RNA interface likely plays an important role in the specificity and affinity of Rev-SLIIB complex formation.  相似文献   

8.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

9.
The Rev proteins of the related but distinct human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) display incomplete functional reciprocity. One possible explanation for this observation is that HIV-2 Rev is unable to interact with the HIV-1 Rev-response element (RRE1). However, an analysis of the biological activity of chimeric proteins derived from HIV-1 and HIV-2 Rev reveals that this target specificity does not map to the Rev RNA binding domain but is instead primarily determined by sequences known to mediate Rev multimerization. Both HIV-1 and HIV-2 Rev are shown to bind the RRE1 in vitro with identical RNA sequence specificity. The observation that HIV-2 Rev can inhibit RRE1-dependent HIV-1 Rev function in trans indicates that the direct interaction of HIV-2 Rev with the RRE1 also occurs in vivo. These data suggest that HIV-2 Rev forms a protein-RNA complex with the RRE1 that leads to only minimal Rev activity. It is hypothesized that this low level of Rev function results from the incomplete and/or aberrant multimerization of HIV-2 Rev on this heterologous RNA target sequence.  相似文献   

10.
Luedtke NW  Liu Q  Tor Y 《Biochemistry》2003,42(39):11391-11403
Semisynthetic aminoglycoside derivatives may provide a means to selectively target viral RNA sites, including the HIV-1 Rev response element (RRE). The design, synthesis, and evaluation of derivatives based upon neomycin B, kanamycin A, and tobramycin conjugates of 9-aminoacridine are presented. To evaluate the importance of the acridine moiety, a series of dimeric aminoglycosides as well as unmodified "monomeric" aminoglycosides have also been evaluated for their nucleic acid affinity and specificity. Fluorescence-based binding assays that use ethidium bromide or Rev peptide displacement are used to quantify the affinities of these compounds to various nucleic acids, including the RRE, tRNA, and duplex DNA. All the modified aminoglycosides exhibit a high affinity for the Rev binding site on the RRE (K(d) 相似文献   

11.
Expression of human immunodeficiency virus type 1 structural proteins requires both the viral Rev trans-activator and its cis-acting RNA target sequence, the Rev response element (RRE). The RRE has been mapped to a conserved region of the HIV-1 env gene and is predicted to form a complex, highly stable RNA stem-loop structure. Site-directed mutagenesis was used to define a small subdomain of the RRE, termed stem-loop II, that is essential for biological activity. Gel retardation assays demonstrated that the Rev trans-activator is a sequence-specific RNA binding protein. The RRE stem-loop II subdomain was found to be both necessary and sufficient for the binding of Rev by the RRE. We propose that the HIV-1 Rev trans-activator belongs to a new class of sequence-specific RNA binding proteins characterized by the presence of an arginine-rich binding motif.  相似文献   

12.
13.
Interaction between the viral protein Rev and the RNA motifs known as Rev response elements (RREs) is required for transport of unspliced and partially spliced human immunodeficiency virus (HIV)-1 and HIV-2 RNAs from the nucleus to the cytoplasm during the later stages of virus replication. A more detailed understanding of these nucleoprotein complexes and the host factors with which they interact should accelerate the development of new antiviral drugs targeting cis-acting RNA regulatory signals. In this communication, the secondary structures of the HIV-2 RRE and two RNA folding precursors have been identified using the SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing methodology together with a novel mathematical approach for determining the secondary structures of RNA conformers present in a mixture. A complementary chemical probing technique was also used to support these secondary structure models, to confirm that the RRE2 RNA undergoes a folding transition and to obtain information about the relative positioning of RRE2 substructures in three dimensions. Our analysis collectively suggests that the HIV-2 RRE undergoes two conformational transitions before assuming the energetically most favorable conformer. The 3D models for the HIV-2 RRE and folding intermediates are also presented, wherein the Rev-binding stem–loops (IIB and I) are located coaxially in the former, which is in agreement with previous models for HIV-1 Rev-RRE binding.  相似文献   

14.
Drugs targeting the stem-loop IIB of Rev responsible element (RRE) of HIV-1 mRNA are potential therapeutic agents for HIV-1 infection. The stem loop is characterized by an internal loop consist of consecutive G-G and G-A mismatches, which is the single binding site for Rev protein for nuclear export of viral mRNA. We report here that ligands binding to G-G and G-A mismatches in duplex DNA also bind to the internal loop in competition with Rev peptide and lead to the dissociation of pre-formed Rev-RRE complex in a model system.  相似文献   

15.
An approach is described to the design of neomycin-dipeptide conjugates as ligands for Rev responsive element (RRE) RNA, which effectively inhibit Rev-RRE interaction. A library of 256 neomycin-dipeptide conjugates was constructed on TentaGel beads using a split-and-pool combinatorial synthesis. Five conjugates were selected after screening the library with fluorescence linked RRE RNA, and they were identified after sequencing by MALDI-TOF mass spectrometer. The heteroconjugates bind to RRE RNA with moderately improved affinities and highly improved specificity, compared to neomycin as determined by means of fluorescence anisotropy and surface plasmon resonance (SPR) experiments. This strategy, synthesis of the neomycin-peptide heteroconjugate library and selection against RNA target, could provide an efficient way to develop inhibitors against pathogenic RNA.  相似文献   

16.
Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev   总被引:28,自引:0,他引:28  
J Kjems  A D Frankel  P A Sharp 《Cell》1991,67(1):169-178
The Rev protein of HIV-1 regulates the synthesis of partially spliced forms of cytoplasmic viral mRNA by binding to a cis-acting RNA sequence, the Rev response element (RRE). We have investigated the regulation of splicing in vitro and have shown that Rev specifically inhibits splicing of pre-mRNAs containing an RRE by 3- to 4-fold. A synthetic peptide of 17 amino acids containing the RNA-binding domain of Rev is highly functional and specifically inhibits splicing by up to 30-fold. Other peptides that bind to the RRE with high affinity, but with low specificity, do not specifically inhibit splicing. Six repeated monomeric binding sites for the peptide can substitute for the RRE, indicating that regulation by Rev requires interactions with multiple sites. The peptide acts at a step in the assembly of splicing complexes, suggesting that one of the functions of the basic region of Rev is to prevent formation of a functional spliceosome.  相似文献   

17.

Background

HIV-1 Rev response element (RRE) is a functional region of viral RNA lying immediately downstream to the junction of gp120 and gp41 in the env coding sequence. The RRE is essential for HIV replication and binds with the Rev protein to facilitate the export of viral mRNA from nucleus to cytoplasm. It has been suggested that changes in the predicted secondary structure of primary RRE sequences impact the function of the RREs; however, functional assays have not yet been performed. The aim of this study was to characterize the genetic, structural and functional variation in the RRE primary sequences selected in vivo by Enfuvirtide pressure.

Results

Multiple RRE variants were obtained from viruses isolated from patients who failed an Enfuvirtide-containing regimen. Different alterations were observed in the predicted RRE secondary structures, with the abrogation of the primary Rev binding site in one of the variants. In spite of this, most of the RRE variants were able to bind Rev and promote the cytoplasmic export of the viral mRNAs with equivalent efficiency in a cell-based assay. Only RRE45 and RRE40-45 showed an impaired ability to bind Rev in a gel-shift binding assay. Unexpectedly, this impairment was not reflected in functional capacity when RNA export was evaluated using a reporter assay, or during virus replication in lymphoid cells, suggesting that in vivo the RRE would be highly malleable.

Conclusions

The Rev-RRE functionality is unaffected in RRE variants selected in patients failing an ENF-containing regimen. Our data show that the current understanding of the Rev-RRE complex structure does not suffice and fails to rationally predict the function of naturally occurring RRE mutants. Therefore, this data should be taken into account in the development of antiviral agents that target the RRE-Rev complex.  相似文献   

18.
Complementary 18-mer oligodeoxynucleotides (oligonucleotides) specifically inhibited the formation of human immunodeficiency virus Rev-Rev-response element (RRE) complexes. Inhibition of Rev-RRE binding required blockage of G-7819 to G-7820 in band shift assays. Structural studies revealed both local and distal effects. RRE structure was also disrupted by oligonucleotides targeted to other minor stems, by altering RNA renaturation conditions, or by reducing Rev concentrations--indicating a dynamic RRE structure and involvement of a minor RRE stem in the maturation of initial Rev-RRE complexes. Thus, complementary oligonucleotides alter RRE structure and may prove useful for the design of therapeutic anti-RRE oligonucleotides.  相似文献   

19.
A number of pathogenic RNA viruses, such as HIV-1, have extensive folded RNA conformations with imperfect A-form duplexes that are essential for virus function, and could serve as targets for structure-specific antiviral drugs. A method for the discovery of such drugs involves evaluation of the interactions with RNA of a wide variety of compounds that are known to bind to nucleic acids by different mechanisms. This approach has been initiated by using corresponding sequence RNA and DNA polymers as initial test systems for analysis of RNA binding strength and selectivity. Compounds that bind exclusively in the minor groove in AT sequences of DNA do not have significant interactions with RNA. Polycations, however, can show significant RNA affinity and binding selectivity, probably through complex formation in the RNA major groove. Some intercalators and a group of diphenylfuran cations have strong interactions with RNA that are very dependent on compound structure. RNA hairpin model systems for the RRE binding site of HIV-1 Rev protein were constructed for more detailed investigations. The diphenylfuran cations bind strongly to RRE and selectively inhibit Rev binding. CD, NMR, and fluorescence binding studies indicate that the active compounds bind in the internal loop region of RRE (with binding constants >107M−1), and cause a conformational change in the RNA. None of the standard nucleic acid binding modes appears to fit the results for complexes of the active compounds with RRE, and it is proposed that the diphenylfuran system threads through the internal loop region of RRE. Such a model allows contacts of the furan cationic substituents with both grooves of RRE in addition to the intercalation interactions with the bases.  相似文献   

20.
Rev is an essential HIV-1 regulatory protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome and is involved in transport of unspliced or partially spliced viral mRNA from the cell nucleus to the cytoplasm. Previous studies have shown that a short alpha-helical peptide derived from Rev (Rev 34-50), and a truncated form of the RRE sequence provide a useful in vitro system to study this interaction while still preserving the essential aspects of the native complex. We have selectively incorporated the fluorescent probe 2-aminopurine 2'-O-methylriboside (2-AP) into the RRE sequence in nonperturbing positions (A68 and U72) such that the binding of both Rev peptide and aminoglycoside ligands could be characterized directly by fluorescence methods. Rev peptide binding to the RRE-72AP variant resulted in a 2-fold fluorescence increase that provided a useful signal to monitor this binding interaction (K(D) = 20 +/- 7 nM). Using stopped-flow kinetic measurements, we have shown that specific Rev peptide binding occurs by a two-step process involving diffusion-controlled encounter, followed by isomerization of the RNA. Using the RRE-68AP and -72AP constructs, three classes of binding sites for the aminoglycoside neomycin were unambiguously detected. The first site is noninhibitory to Rev binding (K(D) = 0.24 +/- 0.040 microM), the second site inhibited Rev binding in a competitive fashion (K(D) = 1. 8 +/- 0.8 microM), and the third much weaker site (or sites) is attributed to nonspecific binding (K(D) >/= 40 microM). Complementary NMR measurements have shown that neomycin forms both a specific binary complex with RRE and a specific ternary complex with RRE and Rev. NMR data further suggest that neomycin occupies a similar high-affinity binding site in both the binary and ternary complexes, and that this site is located in the lower stem region of RRE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号