首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Li L  Li Z  Guo N  Jin J  Du R  Liang J  Wu X  Wang X  Liu M  Jin Q  Yu L 《Letters in applied microbiology》2011,52(4):372-378
Aims: To evaluate the interaction of 1‐(1‐naphthylmethyl)‐piperazine (NMP) and ciprofloxacin (CPFX) in vitro against fluoroquinolone (FQ)‐resistant clinical isolates of methicillin‐resistant Staphylococcus aureus (MRSA). Methods and Results: The in vitro interaction of NMP and CPFX in 12 FQ‐resistant clinical isolates of MRSA was assessed using a checkerboard microdilution method. In the study, a synergistic antimicrobial effect between NMP and CPFX was observed in all 12 FQ‐resistant strains tested, as determined by the fractional inhibitory concentration index (FICI), and in 10 strains using ΔE models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed using the time–killing test and agar diffusion assay for the selected strain, MRSA 1862; synergistic activity was observed when NMP was combined with the first‐line antimicrobial agent CPFX against Staph. aureus. Conclusions: Synergistic activity between NMP and CPFX against clinical isolates of FQ‐resistant Staph. aureus was observed in vitro. Significance and Impact of the Study: This report might provide alternative methods to reduce the resistance of Staph. aureus to CPFX.  相似文献   

2.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

3.
Aims: We investigated the effectiveness in vitro of the association between norfloxacin (NOR) and ursolic acid (UA) against Staphylococcus aureus. Methods and Results: The minimal inhibitory concentrations (MICs), the minimal bactericidal concentrations, the bacterial killing and the postantibiotic effect (PAE) of NOR and UA were determined both singly and in combination. A synergistic interaction was observed against Staph. aureus ATCC 29213: the mean PAEs were 3 h for NOR, ?1·2 h for UA (1 × MIC) and 2·0 h for UA (2 × MIC). Synergism was observed with longer PAEs and postantibiotic sub‐MIC effects after NOR/UA exposure. UA was also active against clinical isolates and methicillin‐resistant Staph. aureus. Conclusions: The application of antimicrobial combinations may address the rising resistance to established classes of both systemic and topical agents. Significance and Impact of the Study: In vitro interactions between NOR and UA may contribute to the development of novel topical agents for the treatment of skin infections as well as for topical formulations.  相似文献   

4.
NZ2114, a new variant of plectasin, was overexpressed in Pichia pastoris X-33 via pPICZαA for the first time. The total secreted protein of fermentation supernatant reached 2,390 mg/l (29 °C) and 2,310 mg/l (25 °C), and the recombinant NZ2114 (rNZ2114) reached 860 mg/l (29 °C) and 1,309 mg/l (25 °C) at 96 h induction in a 5-l fermentor, respectively.The rNZ2114 was purified by cation exchange chromatography, and its yield was 583 mg/l with 94.8 % purity. The minimal inhibitory concentration (MIC) of rNZ2114 to four ATCC strains of Staphyloccocus aureus was evaluated from 0.028 to 0.90 μM. Meanwhile, it showed potent activity (0.11–0.90 μM) to 20 clinical isolates of MRSA. The rNZ2114 killed over 99.9 % of tested S. aureus (ATCC 25923 and ATCC 43300) in Mueller-Hinton medium within 6 h when treated with 4?×?MIC. The postantibiotic effect of rNZ2114 to S. aureus ATCC 25923 and ATCC 43300 was 18.6–45.6 and 1.7–3.5 h under 1×, 2×, and 4× MIC, respectively. The fractional inhibitory concentration index (FICI) indicated a synergistic effect between rNZ2114 and kanamycin, streptomycin, and vancomycin against S. aureus ATCC 25923 (FICI?=?0.125), and additivity between rNZ2114 and ampicillin, spectinomycin (FICI?=?0.625), respectively. To S. aureus ATCC 43300 [methicillin-resistant S. aureus (MRSA)], rNZ2114 showed a synergistic effect (FICI?=?0.125–0.3125) with kanamycin, ampicillin, streptomycin, and vancomycin, and antagonism with spectinomycin (FICI?=?8.0625). The rNZ2114 caused only less than 0.1 % hemolytic activity in the concentration of 128 μg/ml, and showed a good thermostability from 20 to 80 °C. In addition, it exhibited the highest activity at pH 8.0. These results suggested that large-scale production of NZ2114 is feasible using the P. pastoris expression system, and it could be a new potential antimicrobial agent for the prevention and treatment of S. aureus especially for MRSA infections.  相似文献   

5.
Staphylococcus aureus, an opportunistic pathogen, causes diverse community and nosocomial-acquired human infections, including folliculitis, impetigo, sepsis, septic arthritis, endocarditis, osteomyelitis, implant-associated biofilm infections and contagious mastitis in cattle. In recent days, both methicillin-sensitive and methicillin-resistant S. aureus infections have increased. Highly effective anti-staphylococcal agents are urgently required. Lysostaphin is a 27 kDa zinc metallo antimicrobial lytic enzyme that is produced by Staphylococcus simulans biovar staphylolyticus and was first discovered in the 1960s. Lysostaphin is highly active against S. aureus strains irrespective of their drug-resistant patterns with a minimum inhibitory concentration of ranges between 0·001 and 0·064 μg ml−1. Lysostaphin has activity against both dividing and non-dividing S. aureus cells; and can seep through the extracellular matrix to kill the biofilm embedded S. aureus. In spite of having excellent anti-staphylococcal activity, its clinical application is hindered because of its immunogenicity and reduced bio-availability. Extensive research with lysostaphin lead to the development of several engineered lysostaphin derivatives with reduced immunogenicity and increased serum half-life. Therapeutic efficacy of both native and engineered lysostaphin derivatives was studied by several research groups. This review provides an overview of the therapeutic applications of native and engineered lysostaphin derivatives developed to eradicate S. aureus infections.  相似文献   

6.
Microbial resistance to antibiotics affects the control of clinical infections and is a growing concern in global public health. One important mechanism whereby micro-organisms acquire resistance is biofilm formation. This context has led to the investigation of new antimicrobial substances from plants popularly used in folk medicine. In this work, we studied the antimicrobial and antibiofilm activity of Zinnia peruviana roots, ziniolide (major root metabolite) and aerial parts against Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The minimum inhibitory and minimum microbicidal concentration and inhibition of biofilm production was determined. All Z. peruviana extracts showed antimicrobial activity, but that corresponding to the roots was the most active one. The best inhibitory and microbicidal activity was detected against Gram-positive bacteria (0·039–0·078 mg ml−1). The acetonic extract from Z. peruviana leaves showed moderate activity against Gram-positive bacteria (0·625 mg ml−1). Acetonic extract of Z. peruviana flowers showed weak activity (1·25–5 mg ml−1). All the extracts tested showed inhibition of biofilm formation, as well as the ziniolide, however, roots and flowers extracts showed higher antibiofilm activity particularly against Staphylococcus, Listeria and Candida. The extracts tested may be a promising natural alternative for the control of microbial infections.  相似文献   

7.
Abstract

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5?µg ml?1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125?µg ml?1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1–5?h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.  相似文献   

8.
Aims: To study the antimicrobial activity of naringin (NAR), a flavonoid extracted from citrus industry waste, and NAR derivatives [naringenin (NGE), prunin and alkyl prunin esters] against pathogenic bacteria such as L. monocytogenes, E. coli O157:H7 and S. aureus. The relationship between the structure of the chemical compounds and their antagonistic effect was also analysed. Methods and Results: The agar dilution technique and direct contact assaying were applied. NGE, prunin and NAR showed no antimicrobial activity at a concentration of 0·25 mmol l?1. Similarly, fatty acids with a chain length between C2 and C18 showed no antimicrobial activity at the same concentration. However, prunin‐6″‐O‐acyl esters presented high antibacterial activity, mainly against Gram‐positive strains. This activity increased with increasing chain length (up to 10–12 carbon atoms). Alkyl prunin esters with 10–12 carbon atoms diminished viability of L. monocytogenes by about 3 log orders and S. aureus by 6 log orders after 2 h of contact at 37°C and at a concentration of 0·25 mmol l?1. The compounds examined were not effective against any of the Gram‐negative strains assayed, even at the highest concentration. Conclusions: Addition of sugars to the aglycone did not enhance its antimicrobial activity. Attachment of a saturated aliphatic chain with 10–12 carbon atoms to the A ring of the flavonoid (or to sugars attached to this ring), seems to be the most promising modification. In conclusion, alkyl prunin esters with a chain length of C10–C12 have promising features as antimicrobial agents because of their high antilisterial and antistaphylococcal activity. Significance and Impact of the Study: This study shows that it is possible to obtain NAR derivatives with important antimicrobial activity, especially against Gram‐positive pathogenic bacteria. It also provides guidelines on the structural modifications in similar molecules to enhance the antimicrobial activity.  相似文献   

9.
《Phytomedicine》2014,21(1):25-29
The aim of this study was to evaluate the antimicrobial activity of lapachol, α-lapachone, β-lapachone and six antimicrobials (ampicillin, amoxicillin/clavulanic acid, cefoxitin, gentamicin, ciprofloxacin and meropenem) against twelve strains of Staphylococcus aureus from which resistance phenotypes were previously determined by the disk diffusion method. Five S. aureus strains (LFBM 01, LFBM 26, LFBM 28, LFBM 31 and LFBM 33) showed resistance to all antimicrobial agents tested and were selected for the study of the interaction between β-lapachone and antimicrobial agents, busing checkerboard method. The criteria used to evaluate the synergistic activity were defined by the Fractional Inhibitory Concentration Index (FICI). Among the naphthoquinones, β-lapachone was the most effective against S. aureus strains. FICI values ranged from 0.07 to 0.5, suggesting a synergistic interaction against multidrug resistant S. aureus (MRSA) strains. An additive effect was observed with the combination β-lapachone/ciprofloxacin against the LFBM 33 strain. The combination of β-lapachone with cefoxitin showed no added benefit against LFBM 31 and LFBM 33 strains. This study demonstrated that, in general, β-lapachone combined with beta lactams antimicrobials, fluoroquinolones and carbapenems acts synergistically inhibiting MRSA strains.  相似文献   

10.
Lytic bacteriophages (phages) have been investigated as treatments for bacterial infectious diseases. An induced phage, SAP-26, was isolated from a clinical isolate of Staphylococcus aureus. It belongs to the family Siphoviridae and its genome consists of double-stranded 41,207 bp DNA coding for 63 open reading frames. The phage SAP-26 showed a wide spectrum of lytic activity against both methicillin-resistant S. aureus and methicillin-susceptible S.aureus. Furthermore, combined treatment with a phage and antimicrobial agents showed a strong biofilm removal effect which induced structural changes in the biofilm matrix and a substantial decrease in the number of bacteria. Such a broad host range in S. aureus and biofilm removal activity of the phage SAP-26 suggests the possibility of its use as a therapeutic phage in combination with appropriate antimicrobial agent(s). Among the three antimicrobial agents combined with phage, the combination of rifampicin showed the best biofilm removal effect. To the authors' knowledge, this study showed for the first time that S. aureus biofilm could be efficiently eradicated with the mixture of phage and an antimicrobial agent, especially rifampicin.  相似文献   

11.
Aims: The purpose of this study was to evaluate the antimicrobial efficacy of thirteen bismuth thiol preparations for bactericidal activity against established biofilms formed by two bacteria isolated from human chronic wounds. Methods: Single species biofilms of a Pseudomonas aeruginosa or a methicillin‐resistant Staphylococcus aureus were grown in either colony biofilm or drip‐flow reactors systems. Biofilms were challenged with bismuth thiols, antibiotics or silver sulfadiazine, and log reductions were determined by plating for colony formation. Conclusions: Antibiotics were ineffective or inconsistent against biofilms of both bacterial species tested. None of the antibiotics tested were able to achieve >2 log reductions in both biofilm models. The 13 different bismuth thiols tested in this investigation achieved widely varying degrees of killing, even against the same micro‐organism in the same biofilm model. For each micro‐organism, the best bismuth thiol easily outperformed the best conventional antibiotic. Against P. aeruginosa biofilms, bismuth‐2,3‐dimercaptopropanol (BisBAL) at 40–80 μg ml?1 achieved >7·7 mean log reduction for the two biofilm models. Against MRSA biofilms, bismuth‐1,3‐propanedithiol/bismuth‐2‐mercaptopyridine N‐oxide (BisBDT/PYR) achieved a 4·9 log reduction. Significance and Impact of the Study: Bismuth thiols are effective antimicrobial agents against biofilms formed by wound bacteria and merit further development as topical antiseptics for the suppression of biofilms in chronic wounds.  相似文献   

12.
13.
Aims: In traditional Thai medicine, nutgall of Quercus infectoria G. Olivier is well‐documented as an effective agent for wound and skin infections. The present study was aimed to establish modes of action of the ethanol extract of the plant as well as its main constituents to induce anti‐methicillin‐resistant Staphylococcus aureus (MRSA) activity. Methods and Results: The minimal inhibitory concentration (MIC)/minimal bactericidal concentration (MBC) values of ethyl acetate I, ethyl acetate II, 95% ethanol and 30% ethanol fractions against MRSA were 0·06/0·25, 0·13/0·25, 0·25/0·5 and 0·5/1·00 mg ml?1, respectively. Ellagic acid, gallic acid, syringic acid and tannic acid as major components of Q. infectoria nutgall extract were included in this study. Among these, gallic acid and tannic acid demonstrated good MIC/MBC values at 0·06/0·06 and 0·13/0·25 mg ml?1, respectively. A lysis experiment demonstrated that the ethanol extract, ethyl acetate fraction I and all of the main components failed to lyse MRSA cells. In contrast, both MRSA and Staph. aureus ATCC 25923 treated with the ethanol extract, ethyl acetate fraction I, gallic acid and tannic acid displayed significant loss of tolerance to low osmotic pressure and high salt concentration. Conclusions: The results documented the effect of different fractions of Q. infectoria and purified compounds on MRSA and Staph. aureus. In addition, the study demonstrated that treatment with Q. infectoria extract and the purified compounds results in hypersensitivity to low and high osmotic pressure. Significance and Impact of the Study: This study provides scientific information to support the traditional uses of the nutgall extract and suggesting its anti‐MRSA mechanisms.  相似文献   

14.
Following the appearance of several antimicrobial agents to control the spread of infections, two major challenges have emerged: (i) the occurrence and blowout of multiresistant bacteria and the increase of chronic diseases and (ii) difficult-to-eradicate infections. In this study, we tested five benzoylthiourea derivatives for their ability to inhibit and stop bacterial growth and evaluated the possible influence of 1,2,4-triazolyl-benzoylthiourea derivative 4 on the formation and eradication of Staphylococcus aureus biofilms. Benzoylthiourea derivatives 4 , 6 , 10 , 11 and 13 were obtained in one or two steps with low cost and subjected to tests to identify their minimum inhibitory concentration (MIC) and minimum bactericidal concentration. In vitro tests were also performed to assess their effects on biofilm formation and in preformed biofilms and scanning electron microscopy was used to visualize the effects on biofilm formation. The 1,2,4-triazolyl-benzoylthiourea derivative 4 showed bacteriostatic activity against the S. aureus HU25 clinical strain with an MIC of 16 µg ml−1, which is below the toxic concentration (at 2500 µg ml−1, 62·25% of the cells remained viable). Compound 4 also effectively prevented biofilm formation at the three subinhibitory concentrations tested (1/2 MIC, 1/4 MIC and 1/8 MIC) as confirmed by scanning electron microscopy. For breakdown of formed biofilms, the main influence was at a subinhibitory concentration (1/2 MIC). These findings make compound 4 a strong candidate for studies on the development of new antimicrobial and antibiofilm agents.  相似文献   

15.
Aims: The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results: The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip‐flow reactor (DFR), and a three‐species biofilm model was established using methicillin‐resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Cl. perfringens in the colony‐drip‐flow reactor model. Plate counts revealed that MRSA, Ps. aeruginosa and Cl. perfringens grew to 7·39 ± 0·45, 10·22 ± 0·22 and 7·13 ± 0·77 log CFU per membrane, respectively. The three‐species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity? AMD and Acticoat?, compared to sterile gauze controls. Microbial growth on Curity? AMD and gauze was not significantly different, for any species, whereas Acticoat? was found to significantly reduce growth for all three species. Conclusions: Using the colony‐DFR, a three‐species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of the Study: The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment.  相似文献   

16.
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml?1. Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50–1,000 μg ml?1), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.  相似文献   

17.
α-Mangostin-rich extract (AME) exhibited satisfactory inhibitory activities against all tested MRSA strains, with minimum inhibitory concentrations (MICs) of 7·8–31·25 µg ml−1, whereas lawsone methyl ether (LME) and ampicillin revealed weak antibacterial activity with MICs of 62·5–125 µg ml−1. However, the combination of AME and LME showed synergistic effects against all tested MRSA strains with fractional inhibitory concentration index (FICI) values of 0·008–0·009, while the combination of AME and ampicillin, as well as LME and ampicillin produced synergistic effects with FICIs of 0·016–0·257. A time-kill assay against MRSA (DMST 20654 strain) revealed a 6-log reduction in CFU per ml, which completely inhibited bacterial growth for the combinations of AME and LME, AME and ampicillin, and LME and ampicillin at a 8-h incubation, while those against MRSA (2468 strain) were at 10-h incubation. The combination of α-mangostin and LME as well as the combinations of each compound with ampicillin synergized the alteration of membrane permeability. In addition, α-mangostin, LME and ampicillin inhibited the biofilm formation of MRSA. These findings indicated that the combinations of AME and LME or each of them in combination with ampicillin had enhanced antibacterial activity against MRSA. Therefore, these compounds might be used as the antibacterial cocktails for treatment of MRSA.  相似文献   

18.
Antimicrobial action and efficiency of silver-loaded zeolite X   总被引:1,自引:0,他引:1  
Aims: To synthesize silver-loaded zeolite X and establish the extent to which it persist in its antimicrobial action against strains of Escherichia coli K12W-T, Pseudomonas aeruginosa NCIMB8295 and Staphylococcus aureus NCIMB6571. Methods and Results: The antimicrobial action and efficacy of silver-loaded zeolite X on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa were investigated. Zeolite X was synthesized and loaded with Ag+ by ion exchange. This resulted in 2·0% (w/w) loading of Ag+ in the zeolite framework and 5·8% (w/w) on the zeolite. Escherichia coli and Pseudomonas aeruginosa and Staphylococcus aureus suspended in tryptone soya broth were exposed to 0·15, 0·25, 0·5 or 1·0 g l−1 of silver-loaded zeolite X for a period up to 24 h. No viable cells were detected for any of the three micro-organisms within 1 h. Silver-loaded zeolite X, retrieved three times from the first exposure cultures, was washed with de-ionized water and added to fresh bacterial suspensions. The results showed that the silver-loaded zeolite X retained its antimicrobial action. Conclusions: Silver-loaded zeolite X persisted in its antimicrobial action against all three micro-organisms. Significance and Impact of the study: The results are significant for the longevity of antimicrobial action of silver-loaded zeolite X.  相似文献   

19.
Aims: To investigate the potential activation of hydrogen peroxide by a novel catalyst, reducing the concentration of hydrogen peroxide required and the time taken for microbial inactivation. Methods and Results: The antimicrobial properties of an iron‐based novel heterogeneous polyacrylonitrile catalyst in combination with hydrogen peroxide were examined against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus using a modified version of the European suspension test. Antimicrobial activity against Bacillus cereus and Bacillus subtilis endospores was also investigated. Bactericidal activity was significantly increased when the polyacrylonitrile catalyst was combined with hydrogen peroxide. 0·2, 0·5 and 1% w/v hydrogen peroxide resulted in average log reductions of 4·76, 5·59 and 5·37 for E. coli, Ps. aeruginosa and Staph. aureus, respectively, after 60 min exposure at room temperature. The catalyst also significantly increased the activity of hydrogen peroxide against B. subtilis and B. cereus endospores. Conclusions: These studies have demonstrated the potential biocidal use of the novel polyacrylonitrile catalyst when combined with hydrogen peroxide. Significance and Impact of the Study: This is the first publication to demonstrate the enhanced activity gained using the novel heterogeneous catalyst to potentiate the activity of hydrogen peroxide as a biocide.  相似文献   

20.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号