首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Administration of beta-adrenergic agonists to domestic species can lead to skeletal muscle hypertrophy, probably by reducing the rate of myofibrillar protein breakdown. Myofibrillar breakdown is associated with the calcium-dependent proteinase system (calpains I,II and calpastatin) whose activity also changes during beta-agonist treatment. A number of growth trials using the agonists cimaterol and clenbuterol with cattle, sheep, chicken and rat are reported which suggest a general mechanism whereby beta-agonists reduce calpain I activity, but increase calpain II and calpastatin activity in skeletal muscle. Parallel changes in specific mRNAs indicate that changes in gene expression or stabilisation of mRNA could in part explain the changes in activity.  相似文献   

2.
DEAE-Sephacel and phenyl-Sepharose chromatography were compared as methods for separating and quantitatively isolating calpain I, calpain II, and calpastatin from lamb muscle extracts. DEAE-Sephacel chromatography gave greater than 90% recovery of all three proteins, while phenyl-Sepharose gave only 70, 66, and 48% of the DEAE recovery of calpain I, calpain II, and calpastatin, respectively. Additionally, DEAE-Sephacel chromatography was shown to effectively separate calpastatin and calpain I. Consequently DEAE-Sephacel appears to be superior to phenyl-Sepharose for quantitative isolation of the components of the calcium-dependent proteinase system from muscle extracts. Dietary administration of beta-agonist (L-644, 969; Merck Sharpe & Dohme Research Laboratories) decreases extractable calpain I activity in lamb longissimus dorsi (LD) muscle by 10-14% (P less than 0.05), increases calpain II activity by 34-42% (P less than 0.001), and increases calpastatin activity by 59-75% (P less than 0.001). Additionally, net cathepsin B activity is reduced by 30% (P less than 0.05) in the LD of beta-agonist-treated lambs. Reduced activity of the calcium-dependent or catheptic proteinase systems may contribute to the increased protein accretion in muscles of beta-agonist-treated lambs.  相似文献   

3.
It is well known that rapid gain of muscle mass in neonatal pigs is highly related to protein synthesis. However, the role of protein degradation in muscle gain of the neonatal period has not been well established. Calpains and their endogenous inhibitors, calpastatins, play a significant role in early-stage myofibrillar protein degradation. To investigate the role of calpain–calpastatin system in muscle protein accumulation, we studied the expressions of their mRNA in muscle tissue sampled at days 1, 4, 6, 12, 20 and 28 from a total of 36 neonatal pigs. The steady-state mRNA levels of calpains 1A, 2 and 3A, calpastatin types 1, 2 and 3, obtained by quantitative real-time PCR analysis, decreased by 2–4 folds at the age of 4 to 6 days compared to 1-day-old piglets. Then, the relatively low expression level was maintained through 28 days of age. Expressions of calpains 1A, 3A and calpastatin type 1 were significantly correlated with the measurements of muscle protein accumulations such as muscle protein content and RNA/protein ratio. Expressions of calpain 1A, calpastatin types 1 and 3 were negatively correlated with birth weight and fractional rate of growth. The levels of calpains 1A and 2 mRNA were correspondent to their protease activities. In conclusion, decreased levels of calpain and calpastatin expressions over development in neonatal pigs are associated with high protein accumulations, suggesting that dramatic muscle growth during the neonatal period may be partially controlled by down-regulated calpain–calpastatin system.  相似文献   

4.
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of mu- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis.  相似文献   

5.
6.
Vascular smooth muscle contains large amounts of the Ca2+-dependent protease calpain II. In this study, we compared bovine aortic muscle (muscle phenotype) to cultured bovine aortic cells of smooth muscle origin (modulated phenotype) with respect to major constituents of the calpain—calpastatin system. Bovine aortic muscle contained only calpain II by activity measurements, Western blot of tissue extracts and Northern blot of poly(A)+ RNA. On the other hand, using the same methodologies, both calpains I and II as well as the 110 kDa inhibitor protein, calpastatin, were identified in cultured bovine aortic cells of smooth muscle origin. We conclude that the phenotypic state of smooth muscle cells is associated with differential expression of major components of the calpain—calpastatin system. Moreover, bovine aortic muscle is the only tissue identified to date that contains calpain II exclusively.  相似文献   

7.
Calpain system regulates muscle mass and glucose transporter GLUT4 turnover   总被引:2,自引:0,他引:2  
The experiments in this study were undertaken to determine whether inhibition of calpain activity in skeletal muscle is associated with alterations in muscle metabolism. Transgenic mice that overexpress human calpastatin, an endogenous calpain inhibitor, in skeletal muscle were produced. Compared with wild type controls, muscle calpastatin mice demonstrated normal glucose tolerance. Levels of the glucose transporter GLUT4 were increased more than 3-fold in the transgenic mice by Western blotting while mRNA levels for GLUT4 and myocyte enhancer factors, MEF 2A and MEF 2D, protein levels were decreased. We found that GLUT4 can be degraded by calpain-2, suggesting that diminished degradation is responsible for the increase in muscle GLUT4 in the calpastatin transgenic mice. Despite the increase in GLUT4, glucose transport into isolated muscles from transgenic mice was not increased in response to insulin. The expression of protein kinase B was decreased by approximately 60% in calpastatin transgenic muscle. This decrease could play a role in accounting for the insulin resistance relative to GLUT4 content of calpastatin transgenic muscle. The muscle weights of transgenic animals were substantially increased compared with controls. These results are consistent with the conclusion that calpain-mediated pathways play an important role in the regulation of GLUT4 degradation in muscle and in the regulation of muscle mass. Inhibition of calpain activity in muscle by overexpression of calpastatin is associated with an increase in GLUT4 protein without a proportional increase in insulin-stimulated glucose transport. These findings provide evidence for a physiological role for calpains in the regulation of muscle glucose metabolism and muscle mass.  相似文献   

8.
The inhibitory effect of calpastatin (specific inhibitor for calpain) on calpain (Ca2+-dependent cysteine proteinase, EC 3.4.22.17) was examined using carp muscle, carp erythrocytes and rat liver preparations. A mutual inhibitory effect between calpains and calpastatins from different tissues and species was observed. The conservation of the inhibitory effect of calpastatin on calpain among vertebrates suggests that the calpain-calpastatin system may play a biologically fundamental and common role in various cells.  相似文献   

9.
Varricchio  E.  Rubino  T.  Paino  S.  Di Lascio  T.  Paciello  O.  & Langella  M. 《Journal of fish biology》2004,65(S1):335-335
Many recent reports suggest that the calpastatin/calpain system plays a role in cellular growth and differentiation. Defects of the calpastatin/calpain system have been linked to cellular dysfunctions, apoptosis, myocardial infarct, and dystrophies. The calpastatin/calpain system has also been implicated in post‐mortem tenderization of skeletal muscle through degradation of key myofibrillar and associated proteins, a process of key importance to meat quality. In the present study we investigate the presence and activity of the calpastatin/calpain system in trout muscle samples, collected at 0, 3, 18 and 28 h post‐mortem, by immunohistochemistry method. Calpastatin is a specific endogenous enzyme of cytosol, modulating the ubiquitous calpains. Calpastatin was found in samples obtained in vivo and immediately post‐mortem, but its concentration declined rapidly in samples obtained 3, 18 and 28 h post‐mortem. The ubiquitous m e m‐calpains, which are localized on Z line proteins and activated by intracellular Ca2+ increase, showed a rapid decline within 3 h post‐mortem. By contrast p94 calpain, which is specific to skeletal muscle, showed a slow decrease post‐mortem which was independent of intracellular Ca2+ increase. Our results suggest that the mechanism of activation and activity of the calpastatin/calpain system in trout is similar to that described in mammals.  相似文献   

10.
Calpains I and II isolated from diverse tissues possess both Ca2+-independent, and Ca2+-dependent accessible hydrophobic regions. Possible subcellular organelle association of calpains involving these hydrophobic regions was studied. By homogenizing rat tissues directly in Ca2+ (50 microM), about 30-60% of the cytosolic calpain I and II activity reversibly associated with isolated subcellular fractions (microsomal greater than plasma membrane greater than nuclear). After binding to the particulate fraction, calpain II converted to a calpain I-like form exhibiting stronger Ca2+-independent binding to phenyl-Sepharose and a lower Ca2+ requirement for optimal activity. However, it retained its DEAE-cellulose chromatographic pattern, and precipitated with monospecific anti-calpain II antibodies. Although purified calpastatin (endogenous inhibitor) is known to form a Ca2+-dependent complex with calpains, it was not able to reverse the binding of calpains to the particulate fraction upon short incubation. It was, however, effective in blocking calpain binding when the isolated cytosolic fraction or a mixture of purified calpain and calpastatin was preincubated in the presence of Ca2+, and then added to the particulate fraction. Extraction of tissues under controlled conditions revealed that in fact calpains are already loosely associated with subcellular organelles even in the absence of Ca2+. This is the reason why in the crude homogenates with the addition of Ca2+, calpains strongly bind to the particulate fraction without interference by cytosolic calpastatin. Although calpastatin by complexing initially to calpain can prevent the association of this protease with subcellular organelles, it cannot dissociate calpains already bound to these subcellular fractions. By prior Ca2+-independent association with the hydrophobic proteins present in the subcellular fractions, calpains overcome the 3- to 30-fold inhibitory excess of calpastatin in tissues.  相似文献   

11.
12.
While conventional calpains, m- and mu-calpains named according to their calcium-dependence, are expressed in almost every tissues, mRNA of newly identified p94, which has a significant sequence similarity to the conventional calpain large subunits, is abundantly expressed only in skeletal muscle. In addition to this specific expression, p94 is distinct from conventional calpains in that it contains three unique regions showing no similarity to conventional calpain subunits. When rat and human p94 are compared, overall sequence similarity is 94.0%, which is close to those for m- and mu-calpain large subunits; 93.1% and 95.4% between human and rabbit, respectively, suggesting the evolutionary importance of p94. These calpain large subunit proteins, p94, m- and mu-types, can be considered to constitute a super family, whose p94, m- and mu-types represent the three major types. Sequences of the calpain large-subunit family members, including the recently reported Schistosoma calpain, are compared. Their evolutionary correlation and function are discussed on the basis of the results thus far obtained.  相似文献   

13.
Cross-talk between calpain and caspase proteolytic systems has complicated efforts to determine their distinct roles in apoptotic cell death. This study examined the effect of overexpressing calpastatin, the specific endogenous calpain inhibitor, on the activity of the two proteolytic systems following an apoptotic stimulus. Human SH-SY5Y neuroblastoma cells were stably transfected with full-length human calpastatin cDNA resulting in 20-fold overexpression based on Western blot and 5-fold greater calpain inhibitory activity in cell extracts. Wild type and calpastatin overexpressing (CST1) cells were neuronally differentiated and apoptosis-induced with staurosporine (0.1-1.0 microm). Calpastatin overexpression decreased calpain activation, increased caspase-3-like activity, and accelerated the appearance of apoptotic nuclear morphology. Following 0.1-0.2 microm staurosporine, plasma membrane integrity based on calcein-acetoxymethyl fluorescence was significantly greater at 24 h in differentiated CST1 compared with differentiated wild type cells. However, this protective effect was lost at higher staurosporine doses (0.5-1.0 microm), which resulted in pronounced caspase-mediated degradation of the overexpressed calpastatin. These results suggest a dual role for calpains during neuronal apoptosis. In the early execution phase, calpain down-regulates caspase-3-like activity and slows progression of apoptotic nuclear morphology. Subsequent calpain activity, facilitated by caspase-mediated degradation of calpastatin, contributes to plasma membrane disruption and secondary necrosis.  相似文献   

14.
Many studies have demonstrated that the calcium-dependent proteolytic system (calpains and calpastatin) is involved in myoblast differentiation. It is also known that myogenic differentiation can be studied in vitro. In the present experiments, using a mouse muscle cell line (C2C12) we have analyzed both the sequences of appearance and the expression profiles of calpains 1, 2, 3 and calpastatin during the course of myoblast differentiation. Our results mainly show that the expression of ubiquitous calpains (calpain 1 and 2) and muscle-specific calpain (calpain 3) at the mRNAs level as well as at the protein level do not change significantly all along this biological process. In the same time, the specific inhibitor of ubiquitous calpains, calpastatin, presents a stable expression at mRNAs level as well as protein level, all along myoblast to myotube transition. A comparison with other myogenic cells is presented.  相似文献   

15.
The calpain family of calcium‐dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene‐knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin‐overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α‐spectrin, collapsin response mediator protein‐2, and voltage‐gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain‐mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in traumatic brain injury and neurodegenerative disorders.  相似文献   

16.
17.
Structure-function relationships in pig calpastatin were investigated. Calpastatin is an endogenous inhibitor protein specifically acting on calpains (Ca2+-dependent cysteine endopeptidases). We recently cloned and sequenced the cDNA for pig heart calpastatin and determined the amino acid sequence of the molecule from the nucleotide sequence. Various deletion mutants in one of the four internally repetitive domains (Domain 3, approximately 140 amino acid residues) were created by in vitro site-directed mutagenesis of a cloned cDNA fragment and expressed in Escherichia coli. Deletion of a conserved region on either the amino-terminal or carboxyl-terminal side caused a drastic loss of inhibitory activity against calpain I (low Ca2+-requiring form) and, to a lesser degree, against calpain II (high Ca2+-requiring form). Inhibitory activities were below the detectable level in mutants deleted further toward the central region. Substitution of two amino acids in the latter region of the wild-type Domain 3 protein caused a drastic loss of activity against both calpains. The creation of lowered affinity inhibitors enabled us to perform a conventional kinetic analysis which showed the mode of inhibition to be competitive. Prediction of the secondary structure of Domain 3 suggests that both the amino- and carboxyl-terminal conserved regions form alpha-helical structures, which are largely located in the interior of the calpastatin molecule, whereas the central region does not form alpha-helix or beta-structure. The central region contains a 12-residue consensus sequence common to Domains 1, 2, and 4, and this portion is predicted to be located on the surface of the calpastatin molecule. These results suggest that the central conserved region of each domain of calpastatin is an area for direct interaction either with the active center of calpain or a region in close proximity, and the rest of the domain is a region stabilizing the functionally important tertiary structure of the domain.  相似文献   

18.
1. The levels of Ca-independent and Ca-dependent proteolytic activity as well as the activities of calpains and calpastatin in different organs of the rabbit was examined at various developmental stages. 2. Calpain and calpastatin levels were highest in the lung and in the kidney. 3. In all organs examined except the thymus the total level of calpain was higher than that of calpastatin. 4. In the thymus the levels of calpains and calpastatin decreased markedly with age.  相似文献   

19.
A major part of the Ca-activated proteolytic activity in the soluble fraction from rabbit brain could be due to the activity of the neutral thiol-proteases calpain I and II. The activity of calpains exceeded that of the endogenous inhibitor, calpastatin, at all developmental stages studied. The level of calpains increased rapidly from the prenatal stage to reach a peak 10–20 days postnatally. From this period the level of calpains decreased slowly to reach the adult levels. The level of calpastatin increased steadily from the prenatal stage to old age.  相似文献   

20.
Intracellular regulatory system involving calpain and calpastatin   总被引:10,自引:0,他引:10  
Seven years have elapsed since the terms calpain and calpastatin were introduced. During these years, significant progress in research has been recorded. Thus, cloning and sequencing of cDNAs for calpains I and II and calpastatin have established amino acid sequences of these molecules. Structure-function relationship of calpastatin has been studied using mutated cDNAs expressed in E. coli. Interleukin 2 receptor-linked expression of calpastatin in HTLV-I-infected T-cells has been reported. Evidence for Ca2+-induced translocation of calpain to the cell membrane, followed by its autolytic activation, has been discussed. A great varieties of proteins such as several kinases, membrane and cytoskeletal proteins, and hormone receptors have been reported to be susceptible to calpains. This paper is to summarize our current knowledge on chemistry and biology of calpain and calpastatin and thereby to speculate the true function of calpains and their regulatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号