首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The published translation termination sequences have been compiled and analysed to aid the interpretation of experiments on termination codon usage in the Xenopus oocyte (Bienz et al. 1981). There are significant differences between prokaryotes and eukaryotes concerning the usage of the three termination codons and of tandem stops. In addition viruses show termination strategies that differ from those of their hosts. Preferred context sequences flanking termination codons are described. Contexts vary within the last codon according to the nature of the termination codon, but are uniform within the first triplet following the terminators.  相似文献   

2.
Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonymous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa, and L. lactis as their primary host. We use the concept of a “genome landscape,” which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such as GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.  相似文献   

3.
There has been significant progress in understanding the process of protein translation in recent years. One of the best examples is the discovery of usage bias in successive synonymous codons and its role in eukaryotic translation efficiency. We observed here a similar type of bias in the other two life domains, bacteria and archaea, although the bias strength was much smaller than in eukaryotes. Among 136 prokaryotic genomes, 98 were found to have significant bias from random use of successive synonymous codons with Z scores larger than three. Furthermore, significantly different bias strengths were found between prokaryotes grouped by various genomic or biochemical characteristics. Interestingly, the bias strength measured by a general Z score could be fitted well (R = 0.83, P < 10−15) by three genomic variables: genome size, G + C content, and tRNA gene number based on multiple linear regression. A different distribution of synonymous codon pairs between protein-coding genes and intergenic sequences suggests that bias is caused by translation selection. The present results indicate that protein translation is tuned by codon (pair) usage, and the intensity of the regulation is associated with genome size, tRNA gene number, and G + C content.  相似文献   

4.
Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model.  相似文献   

5.
Shao ZQ  Zhang YM  Feng XY  Wang B  Chen JQ 《PloS one》2012,7(3):e33547

Background

In yeast coding sequences, once a particular codon has been used, subsequent occurrence of the same amino acid tends to use codons sharing the same tRNA. Such a phenomenon of co-tRNA codons pairing bias (CTCPB) is also found in some other eukaryotes but it is not known whether it occurs in prokaryotes.

Methodology/Principal Findings

In this study, we focused on a total of 773 bacterial genomes to investigate their synonymous codon pairing preferences. After calculating the actual frequencies of synonymous codon pairs and comparing them with their expected values, we detected an obvious pairing bias towards identical codon pairs. This seems consistent with the previously reported CTCPB phenomenon, since identical codons are certainly read by the same tRNA. However, among co-tRNA but non-identical codon pairs, only 22 were often found overrepresented, suggesting that many co-tRNA codons actually do not preferentially pair together in prokaryotes. Therefore, the previously reported co-tRNA codons pairing rule needs to be more rigorously defined. The affinity differences between a tRNA anticodon and its readable codons should be taken into account. Moreover, both within-gene-shuffling tests and phylogenetic analyses support the idea that translational selection played an important role in shaping the observed synonymous codon pairing pattern in prokaryotes.

Conclusions

Overall, a high level of synonymous codon pairing bias was detected in 73% investigated bacterial species, suggesting the synonymous codon ordering strategy has been prevalently adopted by prokaryotes to improve their translational efficiencies. The findings in this study also provide important clues to better understand the complex dynamics of translational process.  相似文献   

6.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

7.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

8.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

9.
10.
Palidwor GA  Perkins TJ  Xia X 《PloS one》2010,5(10):e13431

Background

In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns.

Principal Findings

In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively.

Conclusions

The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.  相似文献   

11.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

12.
Mycoplasma bovis is a major pathogen causing arthritis, respiratory disease and mastitis in cattle. A better understanding of its genetic features and evolution might represent evidences of surviving host environments. In this study, multiple factors influencing synonymous codon usage patterns in M. bovis (three strains’ genomes) were analyzed. The overall nucleotide content of genes in the M. bovis genome is AT-rich. Although the G and C contents at the third codon position of genes in the leading strand differ from those in the lagging strand (p<0.05), the 59 synonymous codon usage patterns of genes in the leading strand are highly similar to those in the lagging strand. The over-represented codons and the under-represented codons were identified. A comparison of the synonymous codon usage pattern of M. bovis and cattle (susceptible host) indicated the independent formation of synonymous codon usage of M. bovis. Principal component analysis revealed that (i) strand-specific mutational bias fails to affect the synonymous codon usage pattern in the leading and lagging strands, (ii) mutation pressure from nucleotide content plays a role in shaping the overall codon usage, and (iii) the major trend of synonymous codon usage has a significant correlation with the gene expression level that is estimated by the codon adaptation index. The plot of the effective number of codons against the G+C content at the third codon position also reveals that mutation pressure undoubtedly contributes to the synonymous codon usage pattern of M. bovis. Additionally, the formation of the overall codon usage is determined by certain evolutionary selections for gene function classification (30S protein, 50S protein, transposase, membrane protein, and lipoprotein) and translation elongation region of genes in M. bovis. The information could be helpful in further investigations of evolutionary mechanisms of the Mycoplasma family and heterologous expression of its functionally important proteins.  相似文献   

13.
Basak S  Roy S  Ghosh TC 《FEBS letters》2007,581(30):5825-5830
Synonymous codon usage analysis between thermophilic and mesophilic prokaryotes has gained wide attention in recent years. Although it is known that thermophilic and mesophilic prokaryotes use different subset of synonymous codons, no reason for this difference is known so far. In the present communication, by analyzing a large number of thermophilic and mesophilic prokaryotes, we provide evidence that bias in the selection of synonymous codons between thermophilic and mesophilic prokaryotes is related to differential folding pattern of mRNA secondary structures. Moreover, we observe that error-minimizing property has significant influence in differentiating the synonymous codon usage between thermophilic and mesophilic prokaryotes. Biological implications of these results are discussed.  相似文献   

14.
Translation elongation is an accurate and rapid process, dependent upon efficient juxtaposition of tRNAs in the ribosomal A- and P-sites. Here, we sought evidence of A- and P-site tRNA interaction by examining bias in codon pair choice within open reading frames from a range of genomes. Three distinct and marked effects were revealed once codon and dipeptide biases had been subtracted. First, in the majority of genomes, codon pair preference is primarily determined by a tetranucleotide combination of the third nucleotide of the P-site codon, and all 3 nt of the A-site codon. Second, pairs of rare codons are generally under-used in eukaryotes, but over-used in prokaryotes. Third, the analysis revealed a highly significant effect of tRNA-mediated selection on codon pairing in unicellular eukaryotes, Bacillus subtilis, and the gamma proteobacteria. This was evident because in these organisms, synonymous codons decoded in the A-site by the same tRNA exhibit significantly similar P-site pairing preferences. Codon pair preference is thus influenced by the identity of A-site tRNAs, in combination with the P-site codon third nucleotide. Multivariate analysis identified conserved nucleotide positions within A-site tRNA sequences that modulate codon pair preferences. Structural features that regulate tRNA geometry within the ribosome may govern genomic codon pair patterns, driving enhanced translational fidelity and/or rate.  相似文献   

15.
Romero H  Zavala A  Musto H 《Gene》2000,242(1-2):307-311
It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.  相似文献   

16.
In the present study, we examined GC nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI) and gene length for 308 prokaryotic mechanosensitive ion channel (MSC) genes from six evolutionary groups: Euryarchaeota, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria. Results showed that: (1) a wide variation of overrepresentation of nucleotides exists in the MSC genes; (2) codon usage bias varies considerably among the MSC genes; (3) both nucleotide constraint and gene length play an important role in shaping codon usage of the bacterial MSC genes; and (4) synonymous codon usage of prokaryotic MSC genes is phylogenetically conserved. Knowledge of codon usage in prokaryotic MSC genes may benefit from the study of the MSC genes in eukaryotes in which few MSC genes have been identified and functionally analysed.  相似文献   

17.
In the present study, major constraints for codon and amino acid usage of Sulfolobus acidocaldarius, Sulfolobus solfataricus, Sulfolobus tokodali, Sulfolobus islandis and 6 other isolates from islandicus species of genus Sulfolobus were investigated. Correspondence analysis revealed high significant correlation between the major trend of synonymous codon usage and gene expression level, as assessed by the “Codon Adaptation Index” (CAI). There is a significant negative correlation between Nc (Effective number of codons) and CAI demonstrating role of codon bias as an important determinant of codon usage. The significant correlation between major trend of synonymous codon usage and GC3s (G + C at third synonymous position) indicated dominant role of mutational bias in codon usage pattern. The result was further supported from SCUO (synonymous codon usage order) analysis. The amino acid usage was found to be significantly influenced by aromaticity and hydrophobicity of proteins. However, translational selection which causes a preference for codons that are most rapidly translated by current tRNA with multiple copy numbers was not found to be highly dominating for all studied isolates. Notably, 26 codons that were found to be optimally used by genes of S. acidocaldarius at higher expression level and its comparative analysis with 9 other isolates may provide some useful clues for further in vivo genetic studies on this genus.  相似文献   

18.
Synonymous codons are widely selected for various biological mechanisms in both prokaryotes and eukaryotes. Recent evidence suggests that microRNA (miRNA) function may affect synonymous codon choices near miRNA target sites. To better understand this, we perform genome-wide analysis on synonymous codon usage around miRNA target sites in four plant genomes. We observed a general trend of increased site accessibility around miRNA target sites in plants. Guanine-cytosine (GC)-poor codons are preferred in the flank region of miRNA target sites. Within-genome analyses show significant variation among miRNA targets in species. GC content of the target gene can partly explain the variation of site accessibility among miRNA targets. miRNA targets in GC-rich genes show stronger selection signals than those in GC-poor genes. Gene's codon usage bias and the conservation level of miRNA and its target also have some effects on site accessibility, but the expression level of miRNA or its target and the mechanism of miRNA activity do not contribute to site accessibility differences among miRNA targets. We suggest that synonymous codons near miRNA targets are selected for efficient miRNA binding and proper miRNA function. Our results present a new dimension of natural selection on synonymous codons near miRNA target sites in plants, which will have important implications of coding sequence evolution.  相似文献   

19.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

20.
Regularities of context-dependent codon bias in eukaryotic genes   总被引:10,自引:1,他引:9       下载免费PDF全文
Nucleotides surrounding a codon influence the choice of this particular codon from among the group of possible synonymous codons. The strongest influence on codon usage arises from the nucleotide immediately following the codon and is known as the N1 context. We studied the relative abundance of codons with N1 contexts in genes from four eukaryotes for which the entire genomes have been sequenced: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. For all the studied organisms it was found that 90% of the codons have a statistically significant N1 context-dependent codon bias. The relative abundance of each codon with an N1 context was compared with the relative abundance of the same 4mer oligonucleotide in the whole genome. This comparison showed that in about half of all cases the context-dependent codon bias could not be explained by the sequence composition of the genome. Ranking statistics were applied to compare context-dependent codon biases for codons from different synonymous groups. We found regularities in N1 context-dependent codon bias with respect to the codon nucleotide composition. Codons with the same nucleotides in the second and third positions and the same N1 context have a statistically significant correlation of their relative abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号