首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that permitted rapid changes in the ion composition of the serosal solution. The transepithelial electrical properties exhibited a marked seasonal variation that could be attributed to variations in the conductance of the shunt pathway, apical membrane selectivity, and basolateral Na+ transport. In contrast, the passive electrical properties of the basolateral membrane remained constant throughout the year. The apparent transference numbers (Ti) of the basolateral membrane for K+ and Cl- were determined from the effect on the basolateral membrane equivalent electromotive force of a sudden increase in the serosal K+ concentration from 2.5 to 50 mM/liter or a decrease in the Cl- concentration from 101 to 10 mM/liter. TK and TCl were 0.71 +/- 0.05 and 0.04 +/- 0.01, respectively. The basolateral K+ conductance could be blocked by Ba2+ (0.5 mM), Cs+ (10 mM), or Rb+ (10 mM), but was unaffected by 3,4-diaminopyridine (100 microM), decamethonium (100 microM), or tetraethylammonium (10 mM). We conclude that a highly selective K+ conductance dominates the electrical properties of the basolateral membrane and that this conductance is different from those found in nerve and muscle membranes.  相似文献   

2.
This study examines purinergic modulation of short-circuit current (I(SC)) in monolayers of C7- and C11-MDCK cells resembling principal and intercalated cells from collecting ducts. In C7 monolayers, basolateral and apical application of ATP led to similar elevation of I(SC), consisting of a transient phase with maximal I(SC) increment of approximately 10 microA/cm2 terminating in 2-3 min, and a sustained phase with maximal I(SC) less than 2 microA/cm2 and terminating in 10 min. ATP-induced I(SC) was insensitive to the presence of Na+, Cl- and inhibitors of K+ (Ba2+, charibdotoxin (ChTX), clotrimazole (CLT), apamin) and Na + (amiloride) channels in the mucosal solution. Inhibitors of Cl- channels, DIDS and NPPB, added to apical membranes at a concentration of 100 microM, did not affect ATP-induced I(SC), whereas at 500 microM, NPPB inhibited it by 70-80%. Substitution of Cl- with NO3- in serosal medium decreased ATP-induced I(SC) by 2-3-fold and elevation of [K+]o from 6 to 60 mM changed its direction. Basolateral NPPB inhibited I(SC) by 10-fold with ED50 of approximately 30 microM, whereas ChTX (50 nM) and CLT (2 microM) diminished this parameter by 30-50%. Suppression of Na+, K+, Cl- cotransport with bumetanide did not affect the transient phase of ATP-induced I(SC) and slightly diminished its sustained phase. ATP increased ouabainand bumetanide-resistant K+ (86Rb) influx across the basolateral membrane by 7-8-fold, which was partially inhibited with ChTX and CLT. ATP-treated C11 cells exhibited negligible I(SC), and their presence did not affect I(SC) triggered by ATP in C7 cells. Thus, our results show that transcellular ion current in ATP-treated C7 cells is mainly caused by the coupled function of apical and basolateral anion transporters providing transient Cl- secretion. These transporters possess different sensitivities to anion channel blocker NPBB and are under the control of basolateral K+ channels(s) inhibited by ChTX and CLT.  相似文献   

3.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

4.
Smooth muscle membrane potential is determined, in part, by K(+) channels. In the companion paper to this article, we demonstrated that superior mesenteric arteries from rats made hypertensive with N(omega)-nitro-l-arginine (l-NNA) are depolarized and express less K(+) channel protein compared with those from normotensive rats. In the present study, we used patch-clamp techniques to test the hypothesis that l-NNA-induced hypertension reduces the functional expression of K(+) channels in smooth muscle. In whole cell experiments using a Ca(2+)-free pipette solution, current at 0 mV, largely due to voltage-dependent K(+) (K(V)) channels, was reduced approximately 60% by hypertension (2.7 +/- 0.4 vs. 1.1 +/- 0.2 pA/pF). Current at +100 mV with 300 nM free Ca(2+), largely due to large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels, was reduced approximately 40% by hypertension (181 +/- 24 vs. 101 +/- 28 pA/pF). Current blocked by 3 mM 4-aminopyridine, an inhibitor of many K(V) channel types, was reduced approximately 50% by hypertension (1.0 +/- 0.4 vs. 0.5 +/- 0.2 pA/pF). Current blocked by 1 mM tetraethylammonium, an inhibitor of BK(Ca) channels, was reduced approximately 40% by hypertension (86 +/- 14 vs. 53 +/- 19 pA/pF). Differences in BK(Ca) current magnitude are not attributable to changes in single-channel conductance or Ca(2+)/voltage sensitivity. The data support the hypothesis that l-NNA-induced hypertension reduces K(+) current in vascular smooth muscle. Reduced molecular and functional expression of K(+) channels may partly explain the depolarization and augmented contractile sensitivity of smooth muscle from l-NNA-treated rats.  相似文献   

5.
We used perforated patch, whole-cell current recordings and video-based fluorescence ratio imaging to monitor the relation of plasma membrane ionic conductances to intracellular free Ca2+ within individual colonic epithelial cells (HT-29). The Ca2(+)-mediated agonist, neurotensin, activated K+ and Cl- conductances that showed different sensitivities to [Ca2+]i. The Cl- conductance was sensitive to increases or decreases in [Ca2+]i around the resting value of 76 +/- 32 (mean +/- SD) nM (n = 46), whereas activation of the K+ conductance required at least a 10-fold rise in [Ca2+]i. Neurotensin increased [Ca2+]i by stimulating a transient intracellular Ca2+ release, which was followed by a sustained rise in [Ca2+]i due to Ca2+ influx from the bath. The onset of the initial [Ca2+]i transient, monitored at a measurement window over the cell interior, lagged behind the rise in Cl- current during agonist stimulation. This lag was not present when the [Ca2+]i rise was due to Ca2+ entry from the bath, induced either by the agonist or by the Ca2+ ionophore ionomycin. The temporal differences in [Ca2+]i and Cl- current during the agonist-induced [Ca2+]i transient can be explained by a localized Ca2+ release from intracellular stores in the vicinity of the plasma membrane Cl- channel. Chloride currents recover toward basal values more rapidly than [Ca2+]i after the agonist-induced [Ca2+]i transient, and, during a sustained neurotensin-induced [Ca2+]i rise, Cl- currents inactivate. These findings suggest that an inhibitory pathway limits the increase in Cl- conductance that can be evoked by agonist. Because this Cl- current inhibition is not observed during a sustained [Ca2+]i rise induced by ionomycin, the inhibitory pathway may be mediated by another agonist-induced messenger, such as diacylglycerol.  相似文献   

6.
Addition of 10(-5) M amphotericin B to the tear solution of an in vitro preparation of the frog cornea increased the transepithelial conductance, gt, and decreased the apical membrane fractional resistance, f(R0), in the presence or absence of tear Na+ and Cl-. In the presence of tear Na+ and Cl-, amphotericin B increased the short-circuit current, Isc, from 3.9 to 8.8 microA.cm-2 and changed the intracellular potential, V0, from -48.5 to -17.9 mV probably due to a higher increase in the Na+ than in the K+ conductance. In the absence of tear Na+ and Cl-, amphotericin B decreased Isc from 5.5 to about 0 microA.cm-2 due to K+ (and possibly Na+) flux from cell to tear and changed V0 from -35.4 to -63.6 mV due to the increase in conductance of both ions. Increase in the tear K+ from 4 to 79 mM (in exchange for choline), in the presence of amphotericin B and absence of tear Na+ and Cl-, decreased f(R0) from 0.09 to 0.06, increased gt from 0.23 to 0.31 mS, increased Isc from 0.63 to 7.3 microA.cm-2, and changed V0 from -65.5 to -17.3 mV due to the change in EK in the presence of a high conductance in the tear membrane. Similar effects were observed with an increase of tear Na+. Results support the concept that the Na+ conductance opened by amphotericin B in the apical membrane is greater than the K+ conductance. Previously observed transepithelial effects of the ionophore may be explained mostly on the basis of its effect on the apical membrane.  相似文献   

7.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

8.
1. Serotonin, 100 microM, induces a peak increase in short circuit current of about 150 microA/cm2 and in cord conductance of about 7 mS/cm2 and a more prolonged increase of 30 microA/cm2 and 1.4 mS/cm2 which lasts more than 30 min in hen colon. 2. The peak increase in short circuit current and cord conductance is due to a concomitant Cl- secretion. 3. The second messenger, which mediates Cl- secretion, increases in short circuit current and cord conductance, is cyclic AMP as theophylline, 0.5 mM, increases the response in short circuit current to 1 microM serotonin from 38 +/- 5 to 78 +/- 8 microA/cm2 and in g from 1.1 +/- 0.4 to 2.0 +/- 0.3 mS/cm2. 4. Theophylline, 0.5 mM, also sensitizes the hen colon to cyclic AMP yielding an EC50 of 0.24 +/- 0.03 mM in the presence of theophylline compared with an EC50 of 2.3 +/- 0.2 mM in the absence of theophylline. 5. Manipulations of other putative second messenger systems, such as the prostaglandins/leucotrienes, the phosphoinositides and external Ca2+ or calmodulin-sensitive enzymes, did not influence the serotonin response in short circuit current and cord conductance, thus ruling out their importance as intracellular mediators.  相似文献   

9.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

10.
After the incorporation of the tracheal microsomal membrane into bilayer lipid membrane (BLM), a new single channel permeable for calcium was observed. Using the BLM conditions, 53 mM Ca2+ in trans solution versus 200 nM Ca2+ in cis solution, the single calcium channel current at 0 mV was 1.4-2.1 pA and conductance was 62-75 pS. The channel Ca2+/K+ permeability ratio was 4.8. The open probability (P-open) was in the range of 0.7-0.97. The P-open, measured at -10 mV to +30 mV (trans-cis), was not voltage dependent. The channel was neither inhibited by 10-20 microM ruthenium red, a specific blocker of ryanodine calcium release channel, nor by 10-50 microM heparin, a specific blocker of IP3 receptor calcium release channel, and its activity was not influenced by addition of 0.1 mM MgATP. We suggest that the observed new channel is permeable for calcium, and it is neither identical with the known type 1 or 2 ryanodine calcium release channel, nor type 1 or 2 IP3 receptor calcium release channel.  相似文献   

11.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

12.
Effects of cyclooxygenase (COX) inhibitors on transport parameters of the frog corneal epithelium were studied. Epithelial cells of the intact cornea were impaled with microelectrodes. Under short-circuit current (I(sc)) conditions, 10(-4) M ibuprofen (IBU) (non-specific COX inhibitor) or 5 x 10(-5) M rofecoxib (COX-2 inhibitor) were added to the tear solution. With ibuprofen, I(sc) decreased by 1.0 from 3.1 microA/cm2; intracellular potential, V(o), depolarized by 14.2 from -56.9 mV; IBU did not affect the transepithelial conductance, g(t), or the apical membrane fractional resistance, fR(o). With rofecoxib, I(sc) decreased by 0.9 from 4.3 microA/cm2; V(o) depolarized by 18 from -62.4 mV; g(t) significantly increased by 0.03 from 0.37 ms/cm2; and fR(o) decreased by 12 from 50. Basolateral membrane K+ and apical membrane Cl- partial conductances were studied by the ion substitution method. Depolarization of V(o) by an increase in stromal K+ from 4 to 79 mM was smaller with IBU (17.5 mV) or rofecoxib (19.2 mV) than without the inhibitors (29.1 and 29.3 mV, respectively). Depolarization of V(o), by a decrease in tear Cl- from 81 to 8.1 mM, was abolished by the COX inhibitors. Decrease in I(sc) and V(o) can be explained by a decrease in the K+ and Cl-? conductances. Experiments with amphotericin B ruled out a major effect of the inhibitors on the Na+/K+ ATPase pump.  相似文献   

13.
This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.  相似文献   

14.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

15.
Na-K pump current in the Amphiuma collecting tubule   总被引:4,自引:2,他引:2       下载免费PDF全文
There is strong evidence supporting the hypothesis of an electrogenic Na-K pump in the basolateral membrane of several epithelia. Thermodynamic considerations and results in nonepithelial cells indicate that the current carried by the pump could be voltage dependent. In order to measure the pump current and to determine its voltage dependence in a tight epithelium, we have used the isolated perfused collecting tubule of Amphiuma and developed a technique for clamping the basolateral membrane potential (Vbl) through transepithelial current injection. The transcellular current was calculated by subtracting the paracellular current (calculated from the transepithelial conductance measured in the presence of luminal amiloride) from the total transepithelial current. Basolateral membrane current-voltage (I-V) curves were obtained in conditions where the ratio of the pump current to the total basolateral membrane current had been maximized by loading the cells with Na+ (exposure to low-K+ bath), and by blocking the basolateral K+ conductance with barium. The pump current was defined as the difference of the current across the basolateral membrane measured before and 10-15 s after the addition of strophanthidin (20 microM) to the bath solution. With a bath solution containing 3 mM K+, the pump current was nearly constant in the Vbl range of -20 to -80 mV (52 +/- 5 microA.cm-2 at -60 mV) but showed a marked voltage dependence at higher negative Vbl (pump current decreased to 5 +/- 9 microA.cm-2 at -180 mV). In a 1.0 mM K bath, the shape of the pump I-V curve was similar but the amplitude of the current was decreased (24 +/- 4 microA.cm-2 at -60 mV). In a 0.1 mM K bath, the pump current was not significantly different from 0. Our results indicate that the basolateral Na-K pump generates a current which depends on the extracellular potassium concentration. With physiological peritubular concentration of K+ and in the physiological range of potential, the pump activity, measured as the pump-generated current, was independent of the membrane potential.  相似文献   

16.
Sarcoplasmic reticulum membrane vesicles isolated from frog skeletal muscle display high conductance calcium channels when fused into phospholipid bilayers. The channels are selective for calcium and barium over Tris. The fractional open time was voltage-independent (-40 to +25 mV), but was steeply dependent on the free cis [Ca2+] (P0 = 0.02 at 10 microM cis Ca2+ and 0.77 at 150 microM Ca2+; estimated Hill coefficient: 1.6). Addition of ATP (1 mM; cis) further increased P0 from 0.77 to 0.94. Calcium activation was reversed by addition of EGTA to the cis compartment. Magnesium (2 mM) increased the frequency of rapid closures and 8 mM magnesium decreased the current amplitude from 3.4 to 1.2 pA at 0 mV, suggesting a reversible fast blockade. Addition of increasing concentrations of inositol (1, 4, 5)-triphosphate (cis), increased P0 from 0.10 +/- 0.01 (mean +/- SEM) in the control to 0.85 +/- 0.02 at 50 microM in an approximately sigmoidal fashion, with an apparent half-maximal activation at 15 microM inositol (1, 4, 5)-trisphosphate in the presence of 40 microM cis Ca2+. Lower concentrations of this agonist were required to produce a significant increase in P0 when 10 microM or less cis Ca2+ were used. The channel was blocked by the addition to the cis compartment of either 0.5 mM lanthanum, 0.5 microM ruthenium red, or 200 nM ryanodine, all known inhibitors of Ca2+ release from sarcoplasmic reticulum vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

18.
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.  相似文献   

19.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

20.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号