首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
We report on the efficient biochemical synthesis of a large DNA dumbbell starting from a pair of short DNA hairpins with long single-stranded tails of arbitrary sequence. The DNA dumbbell is obtained by enzymatic ligation yielding a 94-bp duplex stem closed at both termini by single-stranded loops of 5 nt. Following ligation, all unligated precursors and monoligated by-products were multiply biotinylated via nick-translation or primer-extension or both. Thus, they could readily be removed from the DNA dumbbell preparation by a mild biomagnetic separation procedure. The closed conformation of the purified DNA dumbbell was verified by its altered gel mobility as compared with unligated or monoligated samples and by an exonuclease assay. Considering the promising therapeutic potential of DNA dumbbells, the developed biosynthetic approach could be used for high-purity preparation of longer, covalently closed DNA decoys.  相似文献   

2.
Intramolecular transposition by Tn10   总被引:24,自引:0,他引:24  
H W Benjamin  N Kleckner 《Cell》1989,59(2):373-383
Transposon Tn10 promotes the formation of a circular product containing only transposon sequences. We show that these circles result from an intramolecular transposition reaction in which all of the strand cleavage and ligation events have occurred but newly created transposon/target junctions have not undergone repair. The unligated strand termini at these junctions are those expected according to a simple model in which the target DNA is cleaved by a pair of staggered nicks 9 bp apart, transposon sequences are separated from flanking donor DNA by cleavage at the terminal nucleotides on both strands (at both ends) of the element, and 3' transposon strand ends are ligated to 5' target strand ends. The stability of the unligated junctions suggests that they are protected from cellular processing by transposase and/or host proteins. We propose that the nonreplicative nature of Tn10 transposition is determined by the efficiency with which the nontransferred transposon strand is separated from flanking donor DNA and by the nature of the protein-DNA complexes present at the strand transfer junctions.  相似文献   

3.
The preparation and characterization of DNA dumbbells that contain the 16 base-pair duplex sequences 5'G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C3' (set 1) and 5'G-C-A-T-C-A-T-C-G-A-T-G-A-T-G-C3' (set 2) are reported. The dumbbells of set 1 have the duplex stem nucleated on both ends by Tn (n = 2, 3, 4, 6, 8, 10, and 14) loops. The dumbbells of set 2 have Tn (n = 2, 4, 8, 10) end loops. For the molecules of set 1, effects of end loop size on the electrophoretic mobility, CD and UV absorbance spectra, and cleavage by restriction enzymes, were investigated. Effects of loop size on the CD spectra and restriction enzyme cleavage of the molecules of set 2 were also examined. Optical melting curves of the molecules of set 1 were collected as a function of sodium ion concentration from 30 to 120 mM. These investigations revealed that as loop size decreases, the electrophoretic mobilities, rates of enzyme cleavage, and optical melting temperatures increase. For end loops with at least three T's the observed increases are inversely proportional to loop size. The behavior of the dumbbell with T2 end loops departs from this linear dependence and is anomalous in every experimental context. For molecules with end loops comprised of at least four T's CD spectra were virtually indistinguishable. However, these spectra differed considerably from the CD spectrum of the T2-looped molecule. The CD spectrum of the dumbbell with T3 end loops displayed features common to the dumbbells with larger loops and T2 end loops. Thermodynamic evidence that the terminal G.C base pairs (bps) nucleating the T2 end loops were intact was obtained from a comparison of the melting temperature of this molecule with that of a DNA dumbbell containing the 14 central bps of the set 1 duplex sequence linked instead by end loops comprised of the four base sequence, C-T-T-C. The tm of this latter molecule was determined to be 9 degrees C less than that of the former dumbbell assumed to contain a 16-bp stem and T2 end loops.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Temperate bacteriophage NJL of Rhodococcus rhodochrous has a 49-kb linear double-stranded DNA with cohesive ends (cos). NJL DNA has unique target sites for HindIII and SspI, two target sites each for NheI and ScaI, and no cleavage site for AxyI, DraI, EcoRI, SacI, and SphI. The single-stranded regions of cos ends were ligated to each other with T4 DNA ligase, removed with mung bean nuclease, or blunted with the Klenow large fragment of DNA polymerase I; then the sequences of the cos ends were determined. Comparison of these sequences revealed that the single-stranded regions are complementary and 18 bases long and protrude at the 3' ends; they have the following sequences: 5'-TTGGCACCGTGGGAGGAG-3' and 3'-AACCGTGGCAC CCTCCTC-5'. A physical map of NJL was constructed by a cos mapping method based on information about the structure of the cohesive ends and multiple digestions with restriction endonucleases.  相似文献   

5.
D Erie  N Sinha  W Olson  R Jones  K Breslauer 《Biochemistry》1987,26(22):7150-7159
We report the first calorimetric and spectroscopic investigation on a member of a new class of nucleic acid secondary structures in which both ends of a duplex core are closed by single-stranded loops. Such structures can be formed intramolecularly from appropriately designed base sequences. We have synthesized the 24-mer sequence shown, and we present calorimetric, spectroscopic, and electrophoretic (formula; see text) evidence that it adopts a dumbbell-shaped, double-hairpin structure. Our data allow us to reach the following conclusions: (1) The phosphodiester gap in the center of the core duplex of the dumbbell does not reduce the transition enthalpy relative to that measured for the corresponding octameric duplex d(GGAATTCC)2. (2) Incorporation of a 5'-phosphate group into the gap decreases the thermal stability of the dumbbell relative to its unphosphorylated sequence. On the basis of the salt dependence of this effect, we propose that the phosphorylation--induced decrease in thermal stability is electrostatic in origin. From the changes in the transition enthalpy and entropy, we suggest that the phosphorylation-induced decrease in thermal stability of the double hairpin arises from electrostatically induced based unstacking at the nick. (3) The thymine residues in the loop behave both electrostatically and enthalpically like denatured single strands. Published nuclear magnetic resonance studies reveal partial stacking of thymine residues in the loops of linear hairpin structures. If this feature persists in the double-hairpin structure, then the spatial overlap of thymine residues in the loops does not necessarily produce a favorable enthalpic contribution. (4) When both ends of the nicked octameric core duplex are constrained by loops of only four thymine residues, the dumbbell structure may adopt conformations in which the 5' and 3' ends at the nick are twisted relative to the helical axis and therefore are not in phase. Such conformations would account for the observed resistance of the double-hairpin structure to ligation, since the 3'OH and 5'P would no longer be collinear.  相似文献   

6.
Abstract

Effects of DNA fragments end structures on their melting profiles were studied experimentally and theoretically. We examined melting of hairpins and dumbbells obtained from 62- bp-long linear DNA duplex which is a perfect palindromic sequence. To fit theoretical melting profile to experimental ones additional theoretical parameters were incorporated into the standard statistical mechanical helix-coil transition theory. From comparison theoretical and experimental melting profiles theoretical parameters connected with end- structure effects were evaluated. Analysis revealed the stabilization effect of the hairpin loops and helix ends with respect to DNA duplex melting. Both type of ends make melting these oligodeoxynucleotides more cooperative than predicted by the standard helix-coil transition theory. At low ionic strength ([Na+] < 0.04 M) this effect becomes so pronounced that melting of the DNA duplexes 30–40 bp-long conforms to the two state model.

From the analysis experimental data obtained for dumbbell structures loop-weighting factor for single-stranded loop consisting of 132 nucleotides was determined. This parameter decreases 10 times with the ionic strength decreasing by an order of magnitude from 0.2 to 0.02 M Na+.  相似文献   

7.
Telomerase is a ribonucleoprotein enzyme that adds telomeric sequence repeats to the ends of linear chromosomes. In vitro, telomerase has been observed to add repeats to a DNA oligonucleotide primer in a processive manner, leading to the postulation of a DNA anchor site separate from the catalytic site of the enzyme. We have substituted photoreactive 5-iododeoxypyrimidines into the DNA oligonucleotide primer d(T4G4T4G4T4G2) and, upon irradiation, obtained cross-links with the anchor site of telomerase from Euplotes aediculatus nuclear extract. No cross-linking occurred with a primer having the same 5' end and a nontelomeric 3' end. These cross-links were shown to be between the DNA primer and (i) a protein moiety of approximately 130 kDa and (ii) U51-U52 of the telomerase RNA. The cross-linked primer could be extended by telomerase in the presence of [alpha-32P]dGTP, thus indicating that the 3' end was bound in the enzyme active site. The locations of the cross-links within the single-stranded primers were 20 to 22 nucleotides upstream of the 3' end, providing a measure of the length of DNA required to span the telomerase active and anchor sites. When the single-stranded primers are aligned with the G-rich strand of a Euplotes telomere, the cross-linked nucleotides correspond to the duplex region. Consistent with this finding, a cross-link to telomerase was obtained by substitution of 5-iododeoxycytidine into the CA strand of the duplex region of telomere analogs. We conclude that the anchor site in the approximately 130-kDa protein can bind duplex as well as single-stranded DNA, which may be critical for its function at chromosome ends. Quantitation of the processivity with single-stranded DNA primers and double-stranded primers with 3' tails showed that only 60% of the primer remains bound after each repeat addition.  相似文献   

8.
Expression of the Saccharomyces cerevisiae CYC1 gene produces mRNA with more than 20 different 5' ends. A derivative of the CYC1 gene (CYC1-157) was constructed with a deletion of a portion of the CYC1 5'-noncoding region, which includes the sites at which many of the CYC1 mRNAs 5' ends map. A 54-mer double-stranded oligonucleotide homologous with the deleted sequence of CYC1-157 and which included a low level of random base pair mismatches (an average of two mismatches per duplex) was used to construct mutants of the CYC1 gene and examine the role of the DNA sequence at and immediately adjacent to the mRNA 5' ends in specifying their locations. The effect of these mutations on the site selection of mRNA 5' ends was examined by primer extension. Results indicate that there is a strong preference for 5' ends which align with an A residue (T in the template DNA strand) preceded by a short tract of pyrimidine residues.  相似文献   

9.
T4 UV endonuclease cleaves double- and single-stranded DNA with equal specificity for photo-pyrimidine dimers. Thus, the enzyme can be used for mapping and quantifying pyrimidine dimers in single-stranded DNA as well as in double-stranded DNA. Mapping of pyrimidine dimers shows that rates of UV-dimerization are not only affected by 5', 3' adjacent bases, but also by position within pyrimidine tracts. Di-pyrimidines at 3' ends of tracts are more photoreactive than those at 5' ends.  相似文献   

10.
We have identified a nuclear factor that binds to double-stranded DNA ends, independently of the structure of the ends. It had equivalent affinities for DNA ends created by sonication or by restriction enzymes leaving 5', 3', or blunt ends but had no detectable affinity for single-stranded DNA ends. Since X rays induce DNA double-strand breaks, extracts from several complementation groups of X-ray-sensitive mammalian cells were tested for this DNA end-binding (DEB) activity. DEB activity was deficient in three independently derived cell lines from complementation group 5. Furthermore, when the cell lines reverted to X-ray resistance, expression of the DEB factor was restored to normal levels. Previous studies had shown that group 5 cells are defective for both double-strand break repair and V(D)J recombination. The residual V(D)J recombination activity in these cells produces abnormally large deletions at the sites of DNA joining (F. Pergola, M. Z. Zdzienicka, and M. R. Lieber, Mol. Cell. Biol. 13:3464-3471, 1993, and G. Taccioli, G. Rathbun, E. Oltz, T. Stamato, P. Jeggo, and F. Alt, Science 260:207-210, 1993), consistent with deficiency of a factor that protects DNA ends from degradation. Therefore, DEB factor may be involved in a biochemical pathway common to both double-strand break repair and V(D)J recombination.  相似文献   

11.
We have investigated the process by which the single-stranded RNA genome of Moloney murine leukemia virus is copied into DNA in vitro. DNA synthesis if initiated near the 5' end of the genome, and the elongation of the growing chain occurs by a jumping mechanism whereby the DNA synthesized at the 5' end of the genome is elongated along the 3' end. Unique DNA fragments synthesized beyond the 5' end of the genome in vitro have, at their 5' and 3' ends, copies of unique sequences from the 5' and 3' ends of the genome. These flank a copy of the 49- to 60-nucleotide terminally redundant sequence. These results indicate that the terminal redundancy serves as a "bridge" to allow a DNA molecule synthesized at the 5' end of the genome to serve as a primer for synthesis from the 3' end.  相似文献   

12.
The hallmarks of telomere dysfunction in mammals are reduced telomeric 3' overhangs, telomere fusions, and cell cycle arrest due to a DNA damage response. Here, we report on the phenotypes of RNAi-mediated inhibition of POT1, the single-stranded telomeric DNA-binding protein. A 10-fold reduction in POT1 protein in tumor cells induced neither telomere fusions nor cell cycle arrest. However, the 3' overhang DNA was reduced and all telomeres elicited a transient DNA damage response in G1, indicating that extensive telomere damage can occur without cell cycle arrest or telomere fusions. RNAi to POT1 also revealed its role in generating the correct sequence at chromosome ends. The recessed 5' end of the telomere, which normally ends on the sequence ATC-5', was changed to a random position within the AATCCC repeat. Thus, POT1 determines the structure of the 3' and 5' ends of human chromosomes, and its inhibition generates a novel combination of telomere dysfunction phenotypes in which chromosome ends behave transiently as sites of DNA damage, yet remain protected from nonhomologous end-joining.  相似文献   

13.
Overstretching of DNA occurs at about 60–70 pN when a torsionally unconstrained double-stranded DNA molecule is stretched by its ends. During the transition, the contour length increases by up to 70% without complete strand dissociation. Three mechanisms are thought to be involved: force-induced melting into single-stranded DNA where either one or both strands carry the tension, or a B-to-S transition into a longer, still base-paired conformation. We stretch sequence-designed oligonucleotides in an effort to isolate the three processes, focusing on force-induced melting. By introducing site-specific inter-strand cross-links in one or both ends of a 64 bp AT-rich duplex we could repeatedly follow the two melting processes at 5 mM and 1 M monovalent salt. We find that when one end is sealed the AT-rich sequence undergoes peeling exhibiting hysteresis at low and high salt. When both ends are sealed the AT sequence instead undergoes internal melting. Thirdly, the peeling melting is studied in a composite oligonucleotide where the same AT-rich sequence is concatenated to a GC-rich sequence known to undergo a B-to-S transition rather than melting. The construct then first melts in the AT-rich part followed at higher forces by a B-to-S transition in the GC-part, indicating that DNA overstretching modes are additive.  相似文献   

14.
15.
Optical melting curves of seven DNA dumbbells with the 16 base-pair duplex sequence 5'G-C-A-T-A-G-A-T-G-A-G-A-A-T-G-C3' linked on both ends by Tn (n = 2, 3, 4, 6, 8, 10, and 14) loops measured in 30, 70, and 120 mM Na+ are analyzed in terms of the numerically exact statistical thermodynamic model of DNA melting. The construction and characterization of these molecules were described in the previous paper (Amaratunga et al., 1992). As was recently reported for hairpins (T. M. Paner, M. Amaratunga, M. J. Doktycz, and A. S. Benight, 1990, Biopolymers, Vol. 29, pp. 1715-1734) theoretically calculated melting curves were fitted to experimental curves by simultaneously adjusting the parameters representing loop and circle formation to optimize the fits. The systematically determined empirical parameters provide evaluations of the free energies of hairpin loop formation delta Gloop (n) and single-strand circles delta Gcircle (N), as a function of end loop size, n = 2-14, and circle size, N = 32 + 2n. The dependence of these quantities on solvent ionic strength over the range from 30 to 120 mM Na+ was evaluated. An approximately analytical expression for the partition function Q(T) of the dumbbells was formulated that allowed a means for determining the transition enthalpy delta H degrees and entropy delta S degrees for every dumbbell, revealing the dependence of these quantities on loop size. In this multistate approach a manifold of partially melted intermediate microstates are considered and therefore no assumptions regarding the nature of the melting transitions (that they are two-state) are required. The transition thermodynamic parameters were also determined from a van't Hoff analysis of the melting curves. Comparisons between the results of the multistate analysis and the two-state van't Hoff analysis revealed significant differences for the dumbbells with larger end loops, indicating that the melting transitions of the larger looped dumbbells deviate considerably from two-state behavior. Results are then compared with published melting studies of much larger DNA dumbbells (D. B. Naritsin and Y. L. Lyubchenko, 1990, Journal of Biomolecular Structure and Dynamics, Vol. 8, pp. 1-13), of small hairpins (Paner et al., 1990; M. J. Doktycz, T. M. Paner, M. Amaratunga and A. S. Benight, 1990, Biopolymers, Vol. 30, pp. 829-845) and another dumbbell (A. S. Benight, J. M. Schurr, P. F. Flynn, B. R. Reid, and D. E. Wemmer, 1988) Journal of Molecular Biology, Vol. 200, pp. 377-399).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The cohesive single-stranded ends of temperate Bacillus subtilis phage phi 105 were analyzed with the exonuclease activities of the Klenow fragment of DNA polymerase I and with exonuclease III and were found to be 3' extensions. Chemical sequencing of 3'-end-labeled fragments showed that the ends are 7-base extended 3' single strands and have the sequence: 5'-GCGCTCC-3'. 3'-CGCGAGG-5'  相似文献   

17.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

18.
The bacteriophage T4-induced type II DNA topoisomerase has been shown previously to make a reversible double strand break in DNA double helices. In addition, this enzyme is shown here to bind tightly and to cleave single-stranded DNA molecules. The evidence that the single-stranded DNA cleavage activity is intrinsic to the topoisomerase includes: 1) protein linkage to the 5' ends of the newly cleaved DNA; 2) coelution of essentially homogeneous topoisomerase and the DNA cleavage activity; 3) inhibition of both single-stranded DNA cleavage and double-stranded DNA relaxation by oxolinic acid; and 4) inhibition of duplex DNA relaxation by single-stranded DNA. The major cleavage sites on phi X174 viral DNA substrates have been mapped, and several cleavage sites analyzed to determine the exact nucleotide position of cleavage. Major cleavage sites are found very near the base of predicted hairpin helices in the single-stranded DNA substrates, suggesting that DNA secondary structure recognition is important in the cleavage reaction. On the other hand, there are also many weaker cleavage sites with no obvious sequence requirements. Many of the properties of the single-stranded DNA cleavage reaction examined here differ from those of the oxolinic acid-dependent, double-stranded DNA cleavage reaction catalyzed by the same enzyme.  相似文献   

19.
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.  相似文献   

20.
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号