首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Microorganisms isolated from naturally rotting egusi fruits which are used as a source of dietary seeds, were mainly bacteria: Bacillus subtilis, B. licheniformis, B. polymyxa, B. megaterium, B. pumilus, Lactobacillus plantarum, La. brevis, Leuconostoc mesenteroides, Enterobacter aerogenes, E. cloacae, Klebsiella aerogenes, K. pneumoniae, Staphylococcus epidermidis, S. aureus, Micrococcus and Candida spp. The rotting period of egusi fruits could be decreased from 120 to 72 h by using a mixture of B. subtilis and B. licheniformis.  相似文献   

2.
The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5'-16S-23S-5S-3' structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three -10 and -35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.  相似文献   

3.
A new species, Enterobacter ludwigii, is presented on the basis of the characteristics of 16 strains, which were isolated from clinical specimens. These bacteria form a distinct genetic cluster in phylogenetic analyses of the population structure of the Enterobacter cloacae complex. As determined by DNA-DNA cross-hybridization experiments in microplates, this genetic cluster can be delineated from the other species of the E. cloacae complex with deltaTm values equal to or above 5 degrees C with Enterobacter hormaechei being the closest relative. The bacteria are gram-negative, fermentative, motile rods with the general characteristics of the genus Enterobacter and the E. cloacae complex in particular. E. ludwigii can be differentiated from the other Enterobacter species by its growth on myo-inositol and 3-0-methyl-D-glucopyranose. The type strain is EN-119 (= DSM 16688T = CIP 108491T).  相似文献   

4.
The growth and respiration of bacterial colonies   总被引:3,自引:0,他引:3  
Young colonies of two swarming organisms, Bacillus subtilis and Proteus vulgaris, grew about as quickly on solid media as in liquid culture whilst four non-swarming organisms, Bacillus cereus, Enterobacter cloacae, Escherichia coli and Staphylococcus albus, all grew slower on solid than in liquid media. Oxygen uptake by young colonies of B. subtilis, followed manometrically, increased exponentially at about the same rate as unrestricted aerobic growth. All other colonies demonstrated accelerating respiration which was either not strictly exponential or, in the case of S. albus, definitely biphasic, with a fast then a slow exponential rate of increase. Actual and potential respiration was determined for each species by measuring oxygen uptake before and after resuspending the colony in liquid medium. The ratio of actual to potential respiration was largest in the flat, spreading B. subtilis and smallest in the small, hemispherical S. albus. Calculations suggest that oxygen penetrates between 31 and 41 micron into colonies of B. cereus, Ent. cloacae and E. coli and only 9 micron into colonies of S. albus.  相似文献   

5.
6.
BACKGROUND: Catalases are important antioxidant metalloenzymes that catalyze disproportionation of hydrogen peroxide, forming dioxygen and water. Two families of catalases are known, one having a heme cofactor, and the other, a structurally distinct family containing nonheme manganese. We have solved the structure of the mesophilic manganese catalase from Lactobacillus plantarum and its azide-inhibited complex. RESULTS: The crystal structure of the native enzyme has been solved at 1.8 A resolution by molecular replacement, and the azide complex of the native protein has been solved at 1.4 A resolution. The hexameric structure of the holoenzyme is stabilized by extensive intersubunit contacts, including a beta zipper and a structural calcium ion crosslinking neighboring subunits. Each subunit contains a dimanganese active site, accessed by a single substrate channel lined by charged residues. The manganese ions are linked by a mu1,3-bridging glutamate carboxylate and two mu-bridging solvent oxygens that electronically couple the metal centers. The active site region includes two residues (Arg147 and Glu178) that appear to be unique to the Lactobacillus plantarum catalase. CONCLUSIONS: A comparison of L. plantarum and T. thermophilus catalase structures reveals the existence of two distinct structural classes, differing in monomer design and the organization of their active sites, within the manganese catalase family. These differences have important implications for catalysis and may reflect distinct biological functions for the two enzymes, with the L. plantarum enzyme serving as a catalase, while the T. thermophilus enzyme may function as a catalase/peroxidase.  相似文献   

7.
8.
Development of a minimal growth medium for Lactobacillus plantarum   总被引:1,自引:0,他引:1  
Aim:  A medium with minimal requirements for the growth of Lactobacillus plantarum WCFS was developed. The composition of the minimal medium was compared to a genome-scale metabolic model of L. plantarum .
Methods and Results:  By repetitive single omission experiments, two minimal media were developed: PMM5 (true minimal medium) and PMM7 [a pseudominimal medium, supporting proper biomass formation of 350 mg l−1 dry weight (DW)]. The specific growth rate of L. plantarum on PMM7 was found to be 50% and 63% lower when compared to growth on established growth media (chemically defined medium and MRS, respectively). Using a genome-scale metabolic model of L. plantarum , it was predicted that PMM5 and PMM7 would not support the growth of L. plantarum . This is because the biosynthesis of para- aminobenzoic acid ( p ABA) was predicted to be essential for growth. The discrepancy in simulated growth and experimental growth on PMM7 was further investigated for p ABA; a molecule which plays an important role in folate production. The growth performance and folate production were determined on PMM7 in the presence and absence of p ABA. It was found that a 12 000-fold reduction in folate pools exerted no influence on formation of biomass or growth rate of L. plantarum cultures when grown in the absence of p ABA.
Conclusion:  Largely reduced folate production pools do not have an effect on the growth of L. plantarum , showing that L. plantarum makes folate in a large excess.
Significance and Impact of the study:  These experiments illustrate the importance of combining genome-scale metabolic models with growth experiments on minimal media.  相似文献   

9.
RpoS, the alternative sigma factor sigma(s), is important for bacterial survival under extreme conditions. Many enterobacteria are opportunistic human pathogens and their ability to survive in a changing environment could be an essential step for their virulence. To determine the presence of this gene in enteric bacteria, an Escherichia coli rpoS probe was constructed and used to detect the presence of this gene in different species. A gene homologous to rpoS was found in Citrobacter amalonaticus, Enterobacter cloacae, Klebsiella planticola, Kluyvera cryocrescens, Serratia rubidaea, Shigella sonnei, and Yersinia ruckeri. Providencia stuartii and Proteus vulgaris were the only tested enterobacteria that did not show any signal with the E. coli rpoS probe or that did not lead to amplification of an rpoS fragment using specific primers. The rpoS gene from E. cloacae and from K. cryocrescens was cloned and sequenced and a mutant allele was constructed in E. cloacae. Survival rates under different harsh conditions were followed in order to determine the effect of rpoS inactivation in exponential- and stationary-phase cells of both strains. E. cloacae rpoS mutants were more sensitive to extreme pH, high osmolarity, and high temperature than the wild-type.  相似文献   

10.
The heat output of and the effect of manganese (II) on Tetrahymena shanghaiensis S199 growth metabolism has been determined by means of a LKB-2277 BioActivity monitor. Different concentrations of manganese(II) ions have different effects on the growth of T. shanghaiensis. At low concentrations (0–40 μg/mL) culture growth is promoted, whereas high concentrations (60–800 μg/mL) slow growth. Furthermore, concentrations of 1200 μg/mL or greater stop the growth of this protozooa completely. Laboratory of Protozoology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, 430072, People’s Republic of China  相似文献   

11.
The expression and secretion signals of the Sep protein from Lactobacillus fermentum BR11 were used to direct export of two peptidoglycan hydrolases by Lb. fermentum BR11, Lactobacillus rhamnosus GG, Lactobacillus plantarum ATCC 14917 and Lactococcus lactis MG1363. The production levels, hydrolytic and bacteriocidal activities of the Listeria monocytogenes bacteriophage N-acetylmuramoyl-l-alanine amidase endolysin Ply511 and the glycylglycine endopeptidase lysostaphin were examined. Buffering of the growth media to a neutral pH allowed detection of Ply511 and lysostaphin peptidoglycan hydrolytic activity from all lactic acid bacteria. It was found that purified Ply511 has a pH activity range similar to that of lysostaphin with both enzymes functioning optimally under alkaline conditions. Supernatants from lactobacilli expressing lysostaphin reduced viability of methicillin resistant Staphylococcus aureus (MRSA) by approximately 8 log(10) CFU/ml compared to controls. However, supernatants containing Ply511 were unable to control L. monocytogenes growth. In coculture experiments, both Lb. plantarum and Lb. fermentum synthesizing lysostaphin were able to effectively reduce MRSA cell numbers by >7.4 and 1.7 log(10)CFU/ml, respectively, while lactic acid bacteria secreting Ply511 were unable to significantly inhibit the growth of L. monocytogenes. Our results demonstrate that lysostaphin and Ply511 can be expressed in an active form from different lactic acid bacteria and lysostaphin showed superior killing activity. Lactobacilli producing lysostaphin may have potential for in situ biopreservation in foodstuffs or for prevention of S. aureus infections.  相似文献   

12.
A strain of Lactobacillus plantarum which was unable to produce manganese (Mn)catalase (ATCC 8014) grew somewhat more rapidly and to a slightly higher plateau density than did an Mn catalase-positive strain (ATCC 14421), and this was the case during aerobic or anaerobic growth. However, when maintenance of viability was measured during the stationary phase of the growth cycle, the advantage provided by Mn catalase was obvious. Thus, the viability of ATCC 14431 was undiminished over 21 h of aerobic incubation, during the stationary phase, whereas that of ATCC 8014 decreased by seven orders of magnitude. Addition of catalase to the medium or growth in the presence of hemin, which allows catalase synthesis, protected ATCC 8014 against this loss of viability. Suppression of Mn catalase within ATCC 14431 by treatment with NH2OH caused the cells to lose viability when exposed to 4 mM H2O2.  相似文献   

13.
Thirty Lactobacillus (L.) plantarum strains, isolated from sourdough, were identified by biochemical tests as well as 16S rDNA sequencing and differentiated on the basis of technological properties, such as amylase, protease, phytase and antirope activities. These properties were shown to be widely differing among the strains, indicating a significant technological diversity. Genetic differentiation was achieved by restriction endonuclease analysis-pulsed field gel electrophoresis (REA-PFGE) that allowed the L. plantarum strains to be divided into 10 different genomic groups. Moreover, 32 different starters were employed in dough making experiments; each starter consisted of a single strain of L. plantarum associated with a maltose positive or a maltose negative yeast. The technological properties of the doughs were greatly influenced by the type of strain included in the starter. The time of leavening and the acidification activities detected in the dough were enhanced by the presence of L. plantarum strains. The bacterial and yeast contents and fermentation properties were statistically treated by principal component analysis (PCA), which allowed the discrimination of different typologies of dough. The study of the peculiar characteristics of different strains of L. plantarum is fundamental for a better understanding of their potential in affecting the nutritional value, quality and stability of the baked goods. L. plantarum strains are able to differentially influence the dough quality when employed as starters.  相似文献   

14.
Strains of Lactobacillus paracasei subsp. paracasei (strain ST11BR), L. pentosus (strain ST151BR), L. plantarum (strain ST13BR), and Lactococcus lactis subsp. lactis (strain ST34BR) producing bacteriocin-like peptides were isolated from barley beer produced in the Western, Northern and Eastern provinces of South Africa. The peptides (bacST11BR, bacST151BR, bacST13BR and bacST34BR) lost their activity after treatment with proteinase K, a proteinase, papain, chymotrypsin, trypsin, pepsin and pronase, but not when they were treated with alpha-amylase, suggesting that the peptides are not glycosylated. The peptides inhibited the growth of Lactobacillus casei, L. sakei, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis, but not Enterobacter cloacae, Lactobacillus bulgaricus subsp. delbrueckii, L. plantarum, L. salivarius, Listeria innocua, Staphylococcus aureus, Streptococcus uberis, S. agalactiae, S. caprinus and S. pneumoniae. Peptides bacST11BR and bacST13BR differed from the other 2 peptides by failing to kill Klebsiella pneumoniae and one of the E. coli strains. Peptides were stable after 2 h of incubation at pH 2.0-12.0, and after 90 min at 100 degrees C. When autoclaved (121 degrees C, 20 min), only bacST13BR lost its activity. The bacteriocin-like peptides were produced at a growth temperature of 30 degrees C, but not at 37 degrees C.  相似文献   

15.
In this study, we determined the internal cellular pH response of Leuconostoc mesenteroides and Lactobacillus plantarum to the external pH created by the microorganisms themselves or by lactic or acetic acids and their salts added to the growth medium. Growth of Leuconostoc mesenteroides stopped when its internal pH reached 5.4 to 5.7, and growth of L. plantarum stopped when its internal pH reached 4.6 to 4.8. Variation in growth medium composition or pH did not alter the growth-limiting internal pH reached by these microorganisms. L. plantarum maintained its pH gradient in the presence of either 160 mM sodium acetate or sodium lactate down to an external pH of 3.0 with either acid. In contrast, the DeltapH of Leuconostoc mesenteroides was zero at pH 4.0 with acetate and 5.0 with lactate. No differences were found between d-(-)- and l-(+)-lactic acid for the limiting internal pH for growth of either microorganism. The comparatively low growth-limiting internal pH and ability to maintain a pH gradient at high organic acid concentration may contribute to the ability of L. plantarum to terminate vegetable fermentations.  相似文献   

16.
17.
In order to investigate the dependence of growth rate upon plant concentrations of iron, manganese and zinc, Betula pendula seedlings were cultivated in a hydroponic system. In three different experiments, all essential nutrient elements except iron, manganese or zinc, were titrated in non-growth limiting amounts at low external concentrations. The solution was continuously recirculated and sprayed on the roots. The micronutrients (Fe, Mn and Zn) were added as addition rates, RA (day-1), relative to the calculated internal amount in the plants. No chelates were added to the culture solution.At steady-state nutrition, plant relative growth rate showed a linear dependence upon the internal concentration of the limiting micronutrient. These data do not support the Steenbjerg effect where negative correlations between growth and plant nutrient concentrations have been reported. Steady-state nutrition was associated with very different growth responses to the different limiting nutrients.  相似文献   

18.
Aims:  The ability of concentrated supernatants from Lactobacillus plantarum to produce a disruption of plasma membrane in eukaryotic and prokaryotic cells has been examined.
Methods and Results:  A strain of Lact. plantarum (tolerant to acid and bile salts and resistant to several antibiotics) was used. It inhibited the growth of pathogenic Escherichia coli and L. monocytogenes . Supernatants from Lact. plantarum were concentrated by centrifugation. Either E. coli or HL-60 cells (a human promyelocytic cell line) were treated in the presence of the concentrated supernatants. The effect of concentrated supernatants from Lact. plantarum on E. coli growth demonstrated a bacteriostatic activity and a loss of cell viability measured by sytox green staining. Concentrated supernatants were capable of disturbing plasma membrane in E. coli and of promoting a cytotoxic and lyctic action on HL-60 cells and on human erythrocytes, respectively.
Conclusions:  These results suggest that Lact. plantarum release an effective compound responsible for an important effect in the disruption of E. coli plasma membrane and for a cytototoxic activity on promyelocytic leukaemia cells.
Significance and Impact of the Study:  This is the first in vitro study about the antimicrobial and biological activities of concentrated supernatants from Lact. plantarum .  相似文献   

19.
Free amino acid pools have been investigated in a citric acid accumulating strain of Aspergillus niger during batch growth under manganese sufficient and deficient conditions by means of an improved chromatographic method. Studies on the mycelial content of several nitrogenous compounds under manganese sufficient and deficient conditions showed that manganese deficiency resulted in lower amino acid pool sizes during trophophase and considerable accumulation during idiophase, and in a reduction of the protein and nucleic acid contents. Addition of cycloheximide to mycelia grown with sufficient manganese also caused an elevation of free amino acid pool sizes, thus indicating that impairment of protein synthesis by manganese deficiency is responsible for the observed rise in amino acid concentration. Furthermore it was observed that the manganese deficient mycelia excreted high amounts of all amino acids suggesting that manganese deficiency may also affect membrane permeability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号