首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fetal rat islets maintained free-floating in tissue culture represent a source of B-cells. Because we recently noted the occurrence of other cell types during long-term tissue culture, this in vitro model was used to examine the possible development of non B-cells. The changes in the numbers and percentages of B, A and D-cells in vitro were estimated by counting the hormone-positive cells after immunocytochemical staining. Insulin, glucagon, and somatostatin contents were determined in extracts of the cultured tissue. The experiments described here showed that the cultured islets maintained their viability over a two-week culture period, as evidenced by the increase of both the number of B-cells per islet and the DNA content per islet. During the first few days of culture, immunocytochemically stained free-floating islets indicated the presence of rare A- and D-cells at the periphery of B-cells; thereafter, numerous A- and D-cells were seen interdigitating with B-cells. Expressed per islet, the number of A- and D-cells increased during the culture; within the endocrine cell population, the percentage of these cells increased with time, at the expense of the percentage of B-cells. The glucagon and somatostatin contents of the free-floating islets were also increased. These converging observations suggest that additional non B-cells may have been produced by free-floating islets during long-term tissue culture.  相似文献   

2.
Summary The histological picuture of the Langerhans' islets in hamster pancreas is quite similar to that in white rat pancreas, i.e. the B-cells are located in the middle of the islet, while the A-cells in its periphery. Very often the argyrophil cells (D-cells) are located between the A- and B-cells forming a peculiar “barrier”. The histochemical studies reveal differences between the endocrine tissue and exocrine parenchyma. In general, the islet cells are richer in enzymes, as compared with the acini. The histochemical characteristic of hamster pancreas is closest to that of white rat pancreas. Like in rat, alkaline phosphomonoesterase reaction is very strong in the A-cells, while G-6-P reaction is negative. But, concerning zinc localization, there are differences between hamster and rat. Zinc reaction is very strong in the peripheral A-cells in white rat pancreas, while in hamster this reaction is much stronger in the B-cells (the reaction is negative in the A-cells). The D-cells can not be differentiated from the other endocrine pancreatic cells by means of hystochemical studies. But these studies permit certain conclusion on the possible role of the enzymes and substances investigated in cytophysiology of the islet cells.  相似文献   

3.
The pancreatic islet tissue of Bufo melanostictus, investigated by differential staining techniques, is generally condensed in the anterior and middle regions, and contains distinguishable islets of various size, shape and or irregular configuration. Histologically, 3 distinct cell types have been identified: B, A1 and A2. Various tinctorial characteristics of B cells reveal that they correspond to the insulin producing B-cells of other vertebrates. The A cells are a few in number, some of which definitely show positive argyrophilia (= A1). A few isolated A- and B-cells are found scattered in the exocrine tissue. A conspicuous feature of several B-cells in some specimens of Bufo melanostictus is the presence of vacuoles of varying size.  相似文献   

4.
Subcellular localization of gamma aminobutyrate-alpha-ketoglutarate transaminase (GABA-T) in the pancreatic islets of Langerhans was determined by use of an electron microscopic, immunogold post-embedding protocol. The objective of this study was to define the islet cell distribution and subcellular localization of GABA-T. Within the islet, GABA-T was found only in the B-cells and was localized in mitochondria; 78 mitochondria contained 336 gold particles, whereas 245 secretory granules contained only 18 gold particles. Although studies utilizing either the isolated perfused pancreas or cultured islets have shown that exogenous GABA modulates D-cell secretion, in this study immunoreactive GABA-T, the catabolic enzyme for GABA, was not detectable in A- and D-cells of the islet. Control studies substituting normal rabbit serum for the GABA-T antiserum resulted in absence of labeling. These results indicate that the high concentration of GABA present in islet B-cells is catabolized by GABA-T in the mitochondrial compartment, consistent with the possibility that GABA functions as a mediator of B-cell activity.  相似文献   

5.
Amylin, an islet amyloid peptide secreted by the pancreatic beta cell, has been proposed as a humoral regulator of islet insulin secretion. Four separate preparations of amylin were tested for effects on hormone secretion in both freshly isolated and cultured rat islets and in HIT-T15, hamster insulinoma cells. With all three experimental models, exposure to human amylin acid and human and rat amylin at concentrations as high as 100 nM had no significant effect on rates of insulin or glucagon secretion. These observations suggest that amylin, even at concentrations appreciably higher than those measured in peripheral plasma, is not a significant humoral regulator of islet hormone secretion.  相似文献   

6.
The aim of the present study was to examine the action of sex-hormones on the endocrine pancreas of the female domestic duckling. Estrogen alone, or in combination with progesterone, inhibited mitosis and caused degranulation only in the B-cells of the pancreatic islets. A- or D-cells of the islets were not affected. Progesterone alone had no effect on any islet cells. It is suggested that estrogen may have dual action (mitotic inhibition and beta cell stimulation) only on B-cells of the pancreatic islets of the domestic ducklings.  相似文献   

7.
The ability of dispersed islet cells in a perifusion system to secret glucagon and insulin in response to physiologic stimuli was investigated. Normal hamster islets were isolated by collagenase digestion and the cells dispersed by sequential digestion with collagenase and trypsin. Following a 50-min period of equilibrium in buffer with high glucose concentrations (5.0 mg/ml), glucagon secretion was stimulated by glucopenia and subsequently, inhibited by increasing the concentration of glucose. The responsiveness to glucose inhibition was significantly less in dispersed islet cells than in intact islets. However, the dispersed islet cells showed significantly greater response to arginine. Glucagon secretion by dispersed islet cells was stimulated to tolbutamide and epinephrine but somatostatin had no effect. Dispersed islet cell preparations did not augment insulin secretion in response to glucose but did secrete more insulin in response to arginine. Intact islets secreted insulin in response to glucose but not arginine. We conclude that A cells in cell suspension do not need direct contact or an intact intra-islet environment in order to respond to glucose, arginine, epinephrine, or tolbutamide but the extent of response may be influenced by paracrine effects. However, paracrine relationships may be important in determining the response of B cells to secretagogues.  相似文献   

8.
Atrial natriuretic peptide (ANP) levels correlate with hyperglycemia in diabetes mellitus, but ANP effects on pancreatic islet β-cell insulin secretion are controversial. ANP was investigated for short- and long-term effects on insulin secretion and mechanisms regulating secretion in isolated rat pancreatic islets. A 3-h incubation with ANP did not affect basal or glucose-stimulated islet insulin secretion. However, 7-day culture of islets with 5.5 mM glucose and ANP (1 nM - 1 μM) markedly inhibited subsequent glucose (11 mM)-stimulated insulin secretion; total islet insulin content was not affected. Following ANP removal for 24 h, the islet insulin-secretory response to glucose was restored. The insulin-secretory response to other insulin secretagogues, including α-ketoisocaproic acid, forskolin, potassium chloride, and ionomycin were also markedly inhibited by chronic exposure to ANP. However, the combination of potassium chloride and α-ketoisocaproic acid was sufficient to overcome the inhibitory effects of ANP on insulin secretion. The glucose-stimulated increases in islet ATP levels and the ATP/ADP ratio were completely inhibited in ANP 7-day-treated islets vs. control; removal of ANP for 24 h partially restored the glucose response. ANP did not affect islet glycolysis. ANP significantly increased levels of islet activated hormone-sensitive lipase and the expression of uncoupling protein-2 and peroxisome proliferator-activated receptor-δ and -α. Although islet ANP-binding natriuretic peptide receptor-A levels were reduced to 60% of control after 7-day culture with ANP, the ANP-stimulated cGMP levels remained similar to control islet levels. Thus, long-term exposure to ANP inhibits glucose-stimulated insulin secretion and ATP generation in isolated islets.  相似文献   

9.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

10.
Nicotinamide phosphoribosyltransferase (Nampt) is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt) and a secreted form, extracellular Nampt (eNampt). eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN), which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM) in a static glucose-stimulated insulin secretion assay (GSIS). In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.  相似文献   

11.
Perfusion of isolated dog pancreases with arginine (20 mM) was associated with a prompt and sustained increase in immunoreactive somatostatin (IRS) in the venous effluent while insulin and glucagon rose promptly but soon receded from their peak levels. These results are compatible with a postulated feedback relationship between somatostatin-, glucagon-, and perhaps insulin-secreting cells of the islets in which somatostatin, stimulated by local glucagon, restrains glucagon secretion and perhaps glucagon-mediated insulin release as well.The demonstration that D-cells of the pancreatic islets contain immunoreactive somatostatin (1, 2, 3) which is probably biologically active (4), and are situated topographically between the A-cells and B-cells in the heterocellular region of the islet (5) has suggested a functional role for these components of the islet of Langerhans (6). In view of the inhibitory action of somatostatin upon both insulin and glucagon secretion (7, 8, 9), it was postulated that the D-cell might serve to restrain glucagon and/or insulin secretion (6). We have since reported that the release of IRS from the isolated dog pancreas increases promptly during the perfusion of high concentrations of glucagon whereas high concentrations of insulin do not appear to stimulate IRS release (10). In this study we examine the effect of perfusion with arginine, a potent stimulus of both glucagon and insulin secretion, upon pancreatic IRS release.  相似文献   

12.
During the digestion of pancreatic pieces with collagenase for prepartion of isolated islets the enzymes in incubation medium (collangenolytic and/or proteolytic) can alter the secretion behavior of A- and B-cells. Insulin release after such an enzymatic attack is characterized by an enhanced basal secretion and a diminished and delayed glucose response. Overdigestion results in a decreased glucagon secretion in response to arginine, a diminished insulin content, and a decreased thiol-protein-disulfide-oxidoreductase activity of the islets. Increased albumin concentrations did not prevent the collagenase effect.  相似文献   

13.
We have studied the effects by cysteamine in vitro and in vivo on hormone production and islet cell metabolism in isolated pancreatic islets and perfused pancreas of the rat. In isolated islets, cysteamine dose-dependently depleted somatostatin immunoreactivity by 50% after 60 min exposure to 1 mmol/l of the compound. This effect appeared to be independent of interaction of the drug with secretion of somatostatin from the pancreatic D-cells. Cysteamine, however, interacted acutely not only with the D-cells, but also markedly suppressed glucose-induced insulin release. Moreover, cysteamine inhibited islet glucose oxidation, an effect which reflects interference with the metabolism mainly of the B-cells. The effect of cysteamine on glucose-induced insulin release was prolonged, since it was still observed in the isolated rat pancreas perfused 24 h after in vivo treatment with cysteamine. In contrast to the effects on glucose-induced insulin release, the response to glibenclamide remained unaffected by a previous exposure to cysteamine in vivo. However, both glucose- and glibenclamide-induced somatostatin secretion was reduced by 50%, whereas basal glucagon secretion was significantly enhanced in pancreata from cysteamine-treated rats vs. control rats. We conclude that (1) cysteamine does not specifically affect the D-cells of the islets, and (2) the multiple effects by cysteamine on islet cell function, particularly on B-cell metabolism and secretion, renders the compound unsuitable for the study of paracrine interactions in the islets.  相似文献   

14.
15.
Cells derived from rat islet tumor and grown in culture (parent cells-RIN-m) and two clones obtained from them were used to study the effect of various secretagogues on insulin, glucagon, and somatostatin secretion. Parent cells secreted all three hormones in various quantities, while clone 5F secreted predominantly insulin and clone 14B secreted predominantly somatostatin. The secretory behavior of these cells were compared to each other and to that of normal islets. In general, as in the case of normal islets, insulin secretion was stimulated by calcium, potassium, tolbutamide, theophylline, and glucagon. It was inhibited by somatostatin. Glucagon secretion was stimulated by calcium, arginine, and theophylline. Somatostatin secretion was stimulated in clone 14B by arginine, tolbutamide, theophylline, and insulin. These cells differ from normal islets, in that they do not respond to glucose or arginine with increased insulin secretion. Also somatostatin failed to inhibit glucagon secretion. The similarity in insulin secretory responses of parent cells and clone 5F suggests that local or paracrine islet hormone secretion plays only a negligible role in the control of other hormone secretion in these cells.  相似文献   

16.
Morphological aspects on pancreatic islets of non-obese diabetic (NOD) mice   总被引:2,自引:0,他引:2  
The pancreatic islets of female non-obese diabetic (NOD) mice (a model of insulin-dependent diabetes mellitus), have been examined by both light and electron microscopy. At about the age of 2 weeks, mononuclear cells began to infiltrate in or near the islets and some of these cells were in contact with the islet cells. Following this degeneration of islet B-cells took place, the process occurring in two ways. In many cells numerous secretory granules with extremely dense cores occupied the cytoplasm. Other cells, however, were filled with low-density secretory granules and the nuclei of these cells became pycnotic. After degeneration of B-cells, the islets were effaced by numerous mononuclear cells. With the onset of the diabetic state these mononuclear cells gradually disappeared, and thereafter small islets remained. By electron microscopy, retrovirus-like particles were observed in cisternae of the rough endoplasmic reticulum in islet B-cells at all stages. With an anti-retrovirus serum (goat anti-KiMSV-NIHxeno serum), positive immunofluorescence was observed in some pancreatic islet cells of NOD mice aged 1 day and 4, 6, 8, 9, 10 and 14 weeks. It is suggested that these virus particles may be intimately related to the inflammatory reaction occurring in the islets and to the development of diabetes mellitus.  相似文献   

17.
Summary Islet amyloid peptide (or diabetes-associated peptide), the major component of pancreatic islet amyloid found in type-2 diabetes, has been identified by electronmicroscopic immunocytochemistry in pancreatic B-cells from five non-diabetic human subjects, and in islets from five type-2 diabetic patients. The greatest density of immunoreactivity for islet amyloid peptide was found in electrondense regions of some lysosomal or lipofuscin bodies. The peptide was also localised by quantification of immunogold in the secretory granules of B-cells, and was present in cytoplasmic lamellar bodies. Acid phosphatase activity was also demonstrated in these organelles. Immunoreactivity for insulin was found in some lysosomes. These results suggest that islet amyloid peptide is a constituent of normal pancreatic B-cells, and accumulates in lipofuscin bodies where it is presumably partially degraded. In islets from type-2 diabetic subjects, amyloid fibrils and lipofuscin bodies in B-cells showed immunoreactivity for the amyloid peptide. Abnormal processing of the peptide within B-cells could lead to the formation of islet amyloid in type-2 diabetes.  相似文献   

18.
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.  相似文献   

19.
20.
Fetal and neonatal pancreatic islets present a lower insulin secretory response as compared with adult islets. Prolonged culturing leads to an improvement of the glucose-induced insulin secretion response in neonatal pancreatic islets that may involve regulation of gap junction mediated cell communication. In this study, we investigated the effect of culturing neonatal islet cells for varying periods of time and with different glucose medium concentrations on the cellular expression of the endocrine pancreatic gap junction associated connexin (Cx) 36 and Cx43. We report here that the 7-d culture induced upregulation of the expression of these junctional proteins in neonatal islets in a time-dependent manner. A correlation was observed between the increased mRNA and protein expression of Cx36 and Cx43 and the increased insulin secretion following islet culturing. In addition, increasing glucose concentration within the culture medium induced a concentration-dependent enhancement of Cx36 islet expression, but not of Cx43 expression in cultured neonatal islets. In conclusion, we suggest that the regulation of gap junctional proteins by culture medium containing factors and glucose may be an important event for the maturation process of beta cells observed at in vitro conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号