首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bingham MA  Simard SW 《Mycorrhiza》2012,22(4):317-326
Ectomycorrhizal (EM) networks (MN) are thought to be an important mode of EM fungal colonization of coniferous seedlings. How MNs affect EM communities on seedlings, and how this varies with biotic and abiotic factors, is integral to understanding their importance in seedling establishment. We examined EM fungal community similarity between mature trees and conspecific interior Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings in two experiments where seed and nursery-grown seedlings originating from different locations were planted at various distances from trees along a climatic gradient. At harvest, trees shared 60% of their fungal taxa in common with outplanted seedlings and 77% with germinants, indicating potential for seedlings to join the network of residual trees. In both experiments, community similarity between trees and seedlings increased with drought. However, community similarity was lower among nursery seedlings growing at 2.5 m from trees when they were able to form an MN, suggesting MNs reduced seedling EM fungal richness. For field germinants, MNs resulted in lower community similarity in the driest climates. Distance from trees affected community similarity of nursery seedlings to trees, but there was no interaction of provenance with MNs in their effect on similarity in either nursery seedlings or field germinants as hypothesized. We conclude that MNs of trees influence EM colonization patterns of seedlings, and the strength of these effects increases with climatic drought.  相似文献   

2.
Pseudotsuga menziesii is one of the most widely planted conifers in the Patagonian Andes of Argentina, having invading characteristics that are broadly reported. We studied the mycorrhizal status of seedlings along six Nothofagaceae + P. menziesii invasion matrices to investigate their role in the invasive process, according to these hypothesis: a) The abundance and richness of EM will be higher in seedlings grown in their own soil; b) In the presence of native EM inoculum, the invasive plant will be associated with generalist mycorrhizae (EM and/or AM), c) AM associations will be more abundant in P. menziesii seedlings grown in Interface or native forest soils, d) Mycorrhizal community differences between treatments will alter host fitness (growth and nutritional parameters). Seedlings from Nothofagus dombeyi, N. antarctica, Lophozonia alpina, L. obliqua and Pseudotsuga menziesii were set up in a soil-bioassay that included soils from non-invaded Nothofagaceae forests, pure P. menziesii plantations, and the interface between both. Pseudotsuga menziesii seedlings showed a decreasing, although never null, ectomycorrhizal (EM) colonization pattern from plantations to non-invaded forests, mainly with exotic EM species. Hebeloma mesophaeum and Wilcoxina sp. 1, two EM species with cosmopolitan distribution, were found to be shared by both tree species. Hebeloma hiemale and Wilcoxina sp. 1, common mycorrhizal partners of P. menziesii in Patagonia although not registered from Nothofagaceae forest, were found to be associated with N. antarctica, being the first report for both fungal species. Pseudotsuga menziesii seedlings showed the ability to form different arbuscular mycorrhiza (AM) colonization types (Paris-, Arum-, Both- and Intermediate-types) depending on the treatments, with significantly higher presence of Intermediate-type in the Interface treatment, where colonization was low. The shared EM species and the presence of different AM colonization types imply enhanced possibilities for invasive P. menziesii seedlings establishment and development. Seedling features and EM colonization rates evidenced that P. menziesii invasion could produce maladaptation (defined as a relative decline in host fitness due to altered mycorrhizal communities from native settings) of mycorrhizal communities, seriously injuring native ecosystem.  相似文献   

3.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

4.
Facilitation is an important ecological mechanism with potential applications to forest restoration. We hypothesized that different facilitation treatments, distance from the forest edge and time since initiation of the experiment would affect forest restoration on abandoned pastures. Seed and seedling abundance, species richness and composition were recorded monthly during two years under isolated trees, bird perches and in open pasture. Seed arrival and seedling establishment were measured at 10 m and 300 m from the forest edge. We sampled a total of 131,826 seeds from 115 species and 487 seedlings from 46 species. Isolated trees and bird perches increased re-establishment of forest species; however, species richness was higher under isolated trees. Overall, abundance and richness of seeds and seedlings differed between sampling years, but was unaffected by distance from the forest edge. On the other hand, species composition of seeds and seedlings differed among facilitation treatments, distance from the forest edge and between years. Seedling establishment success rate was larger in large-seeded species than medium- and small-seeded species. Our results suggest that isolated trees enhance forest re-establishment, while bird perches provide a complementary effort to restore tree abundance in abandoned pastures. However, the importance of seed arrival facilitation shifts toward establishment facilitation over time. Arriving species may vary depending on the distance from the forest edge and disperser attractors. Efforts to restore tropical forests on abandoned pastures should take into account a combination of both restoration strategies, effects of time and proximity to forest edge to maximize regeneration.  相似文献   

5.
Most biodiversity experiments have been conducted in grassland ecosystems with nitrogen limitation, while little research has been conducted on relationships between plant biomass production, substrate nitrogen retention and plant diversity in wetlands with continuous nitrogen supply. We conducted a plant diversity experiment in a subsurface vertical flow constructed wetland for treating domestic wastewater in southeastern China. Plant aboveground biomass production ranged from 20 to 3121 g m?2 yr?1 across all plant communities. In general, plant biomass production was positively correlated with species richness (P = 0.001) and functional group richness (P = 0.001). Substrate nitrate concentration increased significantly with increasing plant species richness (P = 0.046), but not with functional group richness (P = 0.550). Furthermore, legumes did not affect biomass production (P = 0.255), retention of substrate nitrate (P = 0.280) and ammonium (P = 0.269). Compared to the most productive of the corresponding monocultures, transgressive overyielding of mixed plant communities did not occur in most polycultures. Because greater diversity of plant community led to higher biomass production and substrate nitrogen retention, thus we recommend that plant biodiversity should be incorporated in constructed wetlands to improve wastewater treatment efficiency.  相似文献   

6.
We have studied the presence of the foliar endophtye of Picea glauca (white spruce) Phialocephala scopiformis CBS 120377 and its affect on the growth of Choristoneura fumiferana (spruce budworm). Here we examine the transmission of this fungus from 50 trees planted in a test field site to 250 P. glauca seedlings planted under the emerging canopies. After 3 y, the endophyte spread to 40 % of these trees (now 20–30 cm) with an average rugulosin (an anti-insect toxin) concentration of 1 μg g?1. All woody plants within 2 m of the test trees were collected. These were all shown to be negative for P. scopiformis except for some spruce seedlings that arose from seeds (natural generation). This is positive evidence for the horizontal transmission of P. scopiformis and its apparent specificity to P. glauca under field conditions.  相似文献   

7.
The structure, function, and ecosystem services of tropical forest depend on its species richness, diversity, dominance, and the patterns of changes in the assemblages of tree populations over time. Long-term data from permanent vegetation plots have yielded a wealth of data on the species diversity and dynamics of tree populations, but such studies have only rarely been undertaken in tropical forest landscapes that support large human populations. Thus, anthropogenic drivers and their impacts on species diversity and community structure of tropical forests are not well understood. Here we present data on species diversity, community composition, and regeneration status of tropical forests in a human-dominated landscape in the Western Ghats of southern India. Enumeration of 40 plots (50 m × 20 m) results a total of 106 species of trees, 76 species of saplings and 79 species of seedlings. Detrended Correspondence Analysis ordination of the tree populations yielded five dominant groups, along disturbance and altitudinal gradients on the first and second axes respectively. Abundant species of the area such as Albizia amara, Nothopegia racemosa and Pleiospermum alatum had relatively few individuals in recruiting size classes. Our data indicate probable replacement of rare, localized, and old-growth ‘specialists’ by disturbance-adapted generalists, if the degradation is continuing at the present scale.  相似文献   

8.
  1. For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.
  2. We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling''s mycorrhizal community.
  3. While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling''s terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.
  4. These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.
  相似文献   

9.
Fires change the diversity and composition of insects in forest ecosystems. In the present study, we examined the change of butterfly communities after a fire including the increase of butterfly richness, grassland species, and generalist species, and more changed communities. Butterflies were surveyed for 5 years after the big Uljin fire in 2007. During each year, butterflies were counted monthly by the line transect method from April to October at two sites (burned vs. unburned, ~ 1.5 km routes). Specialist grassland species decreased in the year of the fire but generalist species did not increase significantly. Butterfly richness did not change but butterfly diversity decreased due to a sudden increase of a species, Polygonia c-aureum. The butterfly community in the year of the fire was different from those in later years, showing temporary change of community in the year of the fire. Species composition was significantly different between burned and unburned sites, but this phenomenon cannot be interpreted as an influence of fire due to highly variable species composition of local butterfly assemblages and the non-repetitive sampling site of the present study.  相似文献   

10.
The importance of the spatial organisation of individuals in explaining species coexistence within a community is widely recognised. However, few analyses of spatial structure have been performed on tropical agroforests.The main objective of this study was to highlight the links between spatial organisation of shade trees on the one hand, and shade tree species richness and cacao yield on the other, using data from 29 cacao agroforests in Costa Rica.A method of spatial statistics, Ripley's K-function, was used to analyse the spatial organisation of shade and cacao trees in the study plots. For each stand, the X and Y coordinates of ≥2.5-m-tall trees were recorded. In each plot we also assessed shade tree species richness and cacao yield (with total number of pods = number of pods damaged by frosty pod rot + number of healthy pods).Three types of stands were identified: the first was characterised by significant clustering of shade trees, the highest shade tree species richness (S = 6), and the highest number of damaged pods (139 pods ha?1 year?1). The second type was characterised by random spatial organisation of shade trees. The third type showed a trend towards regular organisation. Species richness of shade trees did not differ significantly between the last two types (S = 4 for both), nor did the number of damaged pods (56 pods ha?1 year?1 and 67 pods ha?1 year?1 respectively).Although the trends were not statistically significant for all the variables in our data set, the clustered spatial structure appears to favour a synergy between environmental (tree species richness), and provisioning (cacao production) services.  相似文献   

11.
The effects of aerosol smoke (AS), smoke-water (SW), potassium nitrate (KNO3), naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA) on germination and seedling growth of Jatropha curcas were investigated. Seed coat removal accelerated water imbibition and germination occurred within 48 h. Seeds subjected to AS failed to germinate over a 90 day period. There were no significant differences in germination percentage between the treatments and untreated control (intact- and shelled-seed). However, shelled-seeds had the shortest mean germination time (MGT). Seedlings developed from treated seeds were planted in trays under shade house conditions and growth traits measured after 3 months. Soaking intact-seeds in SW, KNO3 and NAA (24 h) produced significantly heavier and longer seedlings, which resulted in higher vigour indices (VI) compared to the control treatments. These results provide empirical evidence of the stimulatory effect of SW, KNO3 and NAA on J. curcas seedling growth and vigour and the continuation of the effect over time. The approach of treating intact-seeds of J. curcas with plant growth substances prior to planting will help in producing healthy seedlings and possibly improve crop productivity.  相似文献   

12.
In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees.  相似文献   

13.
We studied the natural colonisation of new species in experimental grasslands varying in plant species richness (from 1 to 60) and plant functional group richness (from 1 to 4) in either regularly or never weeded subplots during the first 3 years after establishment. Sown species established successfully, with no differences in species richness or their relative abundances between the regularly and never weeded subplots during the study period. Aboveground biomass of sown species increased with increasing sown species richness in both treatments. While a positive relationship between sown species richness and total aboveground biomass (including colonising species) existed in the 2nd year after sowing in the regularly and never weeded subplots, this positive relationship decayed in the 3rd year in the never weeded subplots because of a higher biomass of colonising species in species-poor mixtures. Total aboveground biomass varied independently of total species richness 3 years after sowing in both treatments. Jaccard similarity of coloniser species composition between regularly and never weeded subplots decreased from the 2nd to the 3rd year, indicating a divergence in coloniser species composition. Coloniser immigration and turnover rates were higher in regularly weeded subplots, confirming that weeding counteracts species saturation and increases the chance that new colonisers would establish. Although our study shows that low diversity plant communities are unstable and converge to higher levels of biodiversity, the effects of initially sown species on community composition persisted 3 years after sowing even when allowing for succession, suggesting that colonising species mainly filled empty niche space.  相似文献   

14.
《Ecological Engineering》2007,29(3):232-244
Urban wetlands typically have few plant species. In wetlands designed to improve water quality, nutrient-rich water and highly variable water levels often favor aggressive, flood-tolerant plants, such as Typha × glauca (hybrid cattail). At Des Plaines River Wetlands Demonstration Site (Lake Co., IL), we assessed T. × glauca dominance and plant community composition under varying hydroperiods in a complex of eight constructed wetlands. Plots flooded for more than 5 weeks during the growing season tended to be dominated by T. × glauca, while plots flooded fewer days did not. Plots with high cover of T. × glauca had low species richness (negative correlation, R2 = 0.72, p < 0.001). However, overall species richness of the wetland complex was high (94 species), indicating that wetlands in urbanizing landscapes can support many plant species where T. × glauca is not dominant. T. × glauca-dominated areas resisted the establishment of a native plant community. Removing T. × glauca and introducing native species increased diversity initially, but did not prevent re-invasion. Although 12 of the 24 species we seeded became established in our cleared plots, T. × glauca rapidly re-invaded. In year 1, T. × glauca regained an average of 11 ramets m−2, and its density doubled in year 2. The likelihood of planted species surviving decreased as duration of inundation increased, and in both seeded and planted plots, graminoids had greater survivorship through year 2 than forbs across a range of water levels. Within 4 years, however, T. × glauca was the most common plant, present in 92% of the cleared plots. Simply removing T. × glauca and adding propagules to an urban wetland is not sufficient to increase diversity.  相似文献   

15.
  1. Recent studies found that the majority of shrub and tree species are associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. However, our knowledge on how different mycorrhizal types interact with each other is still limited. We asked whether the combination of hosts with a preferred association with either AM or EM fungi increases the host tree roots’ mycorrhization rate and affects AM and EM fungal richness and community composition.
  2. We established a tree diversity experiment, where five tree species of each of the two mycorrhiza types were planted in monocultures, two‐species and four‐species mixtures. We applied morphological assessment to estimate mycorrhization rates and next‐generation molecular sequencing to quantify mycobiont richness.
  3. Both the morphological and molecular assessment revealed dual‐mycorrhizal colonization in 79% and 100% of the samples, respectively. OTU community composition strongly differed between AM and EM trees. While host tree species richness did not affect mycorrhization rates, we observed significant effects of mixing AM‐ and EM‐associated hosts in AM mycorrhization rate. Glomeromycota richness was larger in monotypic AM tree combinations than in AM‐EM mixtures, pointing to a dilution or suppression effect of AM by EM trees. We found a strong match between morphological quantification of AM mycorrhization rate and Glomeromycota richness.
  4. Synthesis. We provide evidence that the combination of hosts differing in their preferred mycorrhiza association affects the host''s fungal community composition, thus revealing important biotic interactions among trees and their associated fungi.
  相似文献   

16.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

17.
Community structure and species richness of arbuscular mycorrhizal fungi (Phylum Glomeromycota) were studied in sand dune sites at Itapiruba (southern), Joaquina (intermediate) and Praia Grande (northern) beaches along the coast of the state of Santa Catarina, Brazil. In each site, a 20 × 20 m plot was established and 20 soil samples collected in a regular grid pattern. Fungal spores were extracted from each sample, counted and identified to species level. A total of 25 species were recovered belonging to seven genera and five families in the Glomeromycota. Gigaspora albida and Acaulospora scrobiculata occurred in >50 % of samples at all three sites. Other common species whose sample frequency was >50 % in one or two sites were Scutellospora weresubiae, Scutellospora cerradensis and Racocetra gregaria, while the remaining majority of species were detected in <25 % of samples within a given site. Dune sites could be differentiated based on the higher frequency of occurrence of S. cerradensis and Acaulospora morrowiae in Itapiruba, S. weresubiae in Joaquina, and Scutellospora hawaiiensis in Praia Grande. No differences across sites were observed for species richness and total spore numbers, the latter averaging from 28.8 to 31.8 spores per 100 ml soil. Shannon diversity was significantly higher in Praia Grande compared to the other two sites. Differences in the relative spore abundance of genera among dunes were detected only for Scutellospora, which was significantly more abundant in the Joaquina beach. Community structure, as depicted by species rank/log abundance graphs, was not significantly different between areas according to the Kolmogorov–Smirnov two-sample test. Species accumulation curves demonstrated that 13 samples were enough to detect 90 % of all species. Overall, sand dune systems share similar arbuscular mycorrhizal fungal communities despite being geographically distant (150 km) from each other.  相似文献   

18.
The influence of mature trees on colonization of Douglas-fir (Pseudotsuga menziesii) seedlings by ectomycorrhizal fungi (EMF) is not well understood. Here, the EMF communities of seedlings planted near and far from trees are compared with each other, with EMF of seedlings potted in field soils and with EMF of mature trees. Seedlings were planted within 6 m, or beyond 16 m, from residual Douglas-fir trees in recently harvested green-tree retention units in Washington State, USA, or potted in soils gathered from near each residual tree. Mature tree roots were sampled by partly excavating the root system. The EMF communities were assessed by polymerase chain reaction-restriction fragment length polymorphism and sequence analysis of ribosomal RNA genes. Seedlings near trees had higher species richness and diversity of EMF communities compared with seedlings far from trees. The EMF communities of seedlings near trees were more similar to those of mature trees, while seedlings far from trees were more similar to glasshouse seedlings. By enhancing the EMF diversity of seedlings, residual trees may maintain or accelerate the re-establishment of mycorrhizal communities associated with mature forests.  相似文献   

19.
20.
The establishment and subsequent impacts of invasive plant species often involve interactions or feedbacks with the below-ground subsystem. We compared the performance of planted tree seedlings and soil communities in three ectomycorrhizal tree species at Craigieburn, Canterbury, New Zealand – two invasive species (Pseudotsuga menziesii, Douglas-fir; Pinus contorta, lodgepole pine) and one native (Nothofagus solandri var. cliffortioides, mountain beech) – in monodominant stands. We studied mechanisms likely to affect growth and survival, i.e. nutrient competition, facilitation of carbon and nutrient transfer through mycorrhizal networks, and modification of light and soil conditions by canopy trees. Seedlings were planted in plastic tubes filled with local soil, and placed in monospecific stands. Effects of root competition from trees and mycorrhizal connections on seedling performance were tested by root trenching and use of tubes with or without a fine mesh (20 μm), allowing mycorrhizal hyphae (but not roots) to pass through. Survival and growth were highest in stands of Nothofagus and lowest under Pseudotsuga. Surprisingly, root trenching and mesh treatments had no effect on seedling performance, indicating canopy tree species affected seedling performance through reduced light availability and altered soil conditions rather than below-ground suppression from root competition or mycorrhizal facilitation. Seedlings in Pseudotsuga stands had lower mycorrhizal colonisation, likely as a result of the lower light levels. Soil organic matter levels, microbial biomass, and abundance and diversity of microbe-consuming nematodes were all highest under Nothofagus, and nematode community assemblages differed strongly between native and non-native stand types. The negative effects of non-native trees on nematodes relative to Nothofagus are likely due to the lower availability of soil organic matter and microbial biomass in these stands, and therefore lower availability of resources for nematodes. This study shows that established stands of non-native invasive tree species may adversely affect tree seedlings and soil communities through modifications of the microenvironment both above and below ground. As such, invasion and domination of new landscapes by these species is likely to result in fundamental shifts in community- and ecosystem-level properties relative to those under native forest cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号