首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

2.
We examined the fermentation of starch-based packing peanuts and agricultural wastes as a source of fermentable carbohydrates using Clostridium beijerinckii BA101. Using semidefined P2 medium containing packing peanuts and agricultural wastes, instead of glucose as a carbohydrate source, we measured characteristics of the fermentation including solvent production, productivity, and yield. With starch as substrate (control), the culture produced 24.7 g l−1 acetone–butanol–ethanol (ABE), while with packing peanuts it produced 21.7 g l−1 total ABE with a productivity of 0.20 g l−1 h−1 and a solvent (ABE) yield of 0.37. Cell growth in starch, packing peanuts, and agricultural wastes medium was different, possibly due to the different nature of these substrates. Using model agricultural waste, 20.3g l−1 ABE was produced; when using actual waste, 14.8 g l−1 ABE was produced. The use of inexpensive substrates will increase the economic viability of the conversion of biomass to butanol, and can provide new markets for these waste streams. Journal of Industrial Microbiology & Biotechnology (2002) 29, 117–123 doi: 10.1038/sj.jim.7000285 Received 14 November 2001/ Accepted in revised form 07 June 2002  相似文献   

3.
Spray-dried soy molasses (SDSM) contains the sugars dextrose, sucrose, fructose, pinitol, raffinose, verbascose, melibiose, and stachyose. Of the 746 g kg−1 total sugars in SDSM, 434 g kg−1 is fermentable using Clostridium beijerinckii BA101. SDSM was used to produce acetone, butanol, and ethanol (ABE) by C. beijerinckii BA101 in batch cultures. Using 80 g l−1 SDSM, 10.7 g l−1 ABE was produced in P2 medium. Higher concentrations of SDSM resulted in poor solvent production due to the presence of excessive salt and inhibitory components. C. beijerinckii BA101 in SDSM at 80 g l−1 concentration produced 22.8 g l−1 ABE when supplemented with 25.3 g l−1 glucose. SDSM contains 57.4 g kg−1 mineral ash and 2% tri-calcium phosphate. Tri-calcium phosphate up to 43.1 g l−1 was not inhibitory and at a tri-calcium phosphate concentration of 28.8 g l−1, the culture produced more solvents (30.1 g l−1) than the control experiment (23.8 g l−1). In contrast, sodium chloride was a strong inhibitor of C. beijerinckii BA101 cell growth. At a concentration of 10 g l−1 sodium chloride, a maximum cell concentration of 0.6 g l−1 was achieved compared to 1.7 g l−1 in the control experiment. The effects of two salts on specific growth rate constant (μ) and specific rate of ABE production (ν) for C. beijerinckii BA101 were examined. Journal of Industrial Microbiology & Biotechnology (2001) 26, 290–295. Received 20 September 2000/ Accepted in revised form 16 February 2001  相似文献   

4.
5.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

6.
Kubitscheck U  Homann U  Thiel G 《Planta》2000,210(3):423-431
The dye FM1-43 was used alone or in combination with measurements of the membrane capacitance (Cm) to monitor membrane changes in protoplasts from Viciafaba L. guard cells. Confocal images of protoplasts incubated with FM1-43 (10 μM) at constant ambient osmotic pressure (πo) revealed in confocal images a slow internalisation of FM1-43-labelled membrane into the cytoplasm. As a result of this process the relative fluorescence intensity of the cell interior (fFM,i) increased with reference to the total fluorescence (fFM,t) by 7.4 × 10−4 min−1. This steady internalisation of dye suggests the occurrence of constitutive endocytosis under constant osmotic pressure. Steady internalisation of FM1-43 labelled membrane caused a prominent staining of a ring-like structure located beneath the plasma membrane. Abrupt elevation of πo by 200 mosmol kg−1 caused, over the first minutes of incubation, a rapid internalisation of FM1-43 fluorescence into the cytoplasm concomitant with a decrease in cell perimeter. Within the first 5 min the cell perimeter decreased by 7.9%. Over the same time fFM,i/fFM,t increased by 0.13, reflecting internalisation of fluorescent label into the cytoplasm. Combined measurements of Cm and total fluorescence of a protoplast (fFM,p) showed that an increase in πo evoked a decrease in Cm but no change in fFM,p. This means that surface contraction of the protoplast is due to retrieval of excess membrane from the plasma membrane and internalisation into the cytoplasm. Further inspection of confocal images revealed that protoplast shrinking was only occasionally associated with internalisation of giant vesicles (median diameter 2.7 μm) with FM1-43-labelled membrane. But, in all cases, osmotic contraction was correlated with a diffuse distribution of FM1-43 label throughout the cytoplasm. From this, we conclude that endocytosis of small vesicles into the cytoplasm is the obligatory process by which cells accommodate an osmotically driven decrease in membrane surface area. Received: 4 May 1999 / Accepted: 19 August 1999  相似文献   

7.
This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790–810 g L−1) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption–desorption processes has been calculated to be 1,948 kcal kg−1 butanol as compared to 5,789 kcal kg−1 butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg−1 butanol, respectively. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

8.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

9.
Glasshouse experiments were conducted to evaluate the influence of L-methionine (L-MET) and L-ethionine (L-ETH) added to soil on the growth of corn (Zea mays L.) and tomato (Lycopersicon esculentum), respectively. The application of L-MET and L-ETH stimulated C2H4 production in soil by 299- and 313-fold, respectively, over an unamended control. An L-MET treatment of 1.85 mg kg−1 soil was the most effective in increasing shoot height, shoot fresh weight, internodal distance, and stem diameter in two corn cultivars, Kandy Korn and Miracle, while shoot and root dry weights, leaf width, uppermost leaf collar base distance and resistance to stem breaking were increased in the case of Kandy Korn only. A significant epinastic response was observed in the second and third leaves of tomato plants when soil was treated with L-ETH. An L-ETH treatment of 0.2 mg kg−1 soil resulted in the maximum fresh fruit yield, while 0.02 and 2.0 mg kg−1 gave the most fruit and greater average weight of fresh fruit, respectively. Concentrations ranging from 0.002 to 2.0 mg L-ETH kg−1 soil initiated early fruit formation. Early fruit ripening was observed with an application rate of 20 mg L-ETH kg−1 soil. The mechanism of action of these chemicals could either be attributed to i) substrate-dependent C2H4 production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within the tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

10.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

11.
Sehtiya  H. L.  Goyal  Sham S. 《Plant and Soil》2000,227(1-2):185-190
The effect of light and exogenously supplied sucrose on NO3 uptake was studied in 9-day-old intact C3 (barley) and C4 (corn) seedlings. The seedlings used were uninduced for nitrate uptake system (i.e. had never seen nitrogen during germination and growth) and were exposed to continuous light for 3 days to avoid any diurnal variation and to load the seedlings fully with photosynthates. The uptake assay was conducted either in light or in darkness. Prior to assay, seedlings were treated with darkness or light for 24 h. Accordingly, four sets of seedlings, i.e. pretreated with light and assayed in light (LL); pretreated and assayed in darkness (DD); pretreated with light and assayed in darkness (LD); and pretreated with darkness and assayed in light (DL) were formed. Barley exhibited 55% higher NO3 uptake than corn during light (LL) and 91% higher during darkness (DD). Shifting barley seedlings from light to dark (LD) or dark to light (DL) for uptake assay, did not affect NO3 uptake, i.e. in LD the uptake was similar to LL and in DL it was similar to DD. However, in corn, the light conditions during the assay determined the uptake regardless of the conditions during the period preceding the assay. One percent sucrose in the medium increased NO3 uptake by 31% in barley and 70% in corn during light (LL). The corresponding increase during darkness (DD) was 38% in both barley and corn. Removal of the corn residual endosperm decreased NO3 uptake by 40% during darkness. Etiolated seedlings (those having never seen light) of both barley and corn were able to take up significant amount of NO3 during darkness. Externally supplied sucrose in the assay medium of etiolated seedlings increased the NO3 uptake to about 4 and 2 fold in barley and corn, respectively. The data presented here provide evidence that: 1. In intact seedlings, light per se is not obligatory for NO3 uptake and that the carbohydrate supply may mimic light. 2. Light affected the NO3 uptake differently in barley and corn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
This paper gives the results from four-year field experiments on compost application, added at the maximum rate allowed by Italian legislation (30 t/ha/y). The purpose of the experiment was to evaluate any eventual heavy metal accumulation in soil and corn plants. Cadmium in corn plants increased particularly in the roots from 0.22 mg kg−1 to 1.31 mg kg−1, concentration of Zn and Cu increased in grains, from 26.8 to 35.8 and from 2.4 to 4.2 mg kg−1 respectively. Relevant increase in the roots was detected for Zn from 34.6 to 146.8 mg kg−1. Only in the 4th year Ni concentration increases in the root portion while the content of Pb and Cr in corn was generally unaffected by the compost application. Heavy metals in the soil determined by a sequential chemical extraction, indicated that extractability changed with time. A certain increase was found from the beginning to the end of the experiment particularly for Zn, from 23.3 mg kg−1 to 45.1 mg kg−1 in extractable forms. Nevertheless the extractable amounts are rather small in respect to the total heavy metal content of compost.  相似文献   

13.
Four different processes for butanol production from corn, namely, batch fermentation and distillative recovery (BFDR), batch fermentation and pervaporative recovery (BFPR), fed-batch fermentation and pervaporative recovery (FBFPR), and immobilized cell continuous fermentation and pervaporative recovery (ICCFPR) were evaluated. Pervaporative recovery significantly reduces the cost of butanol production. Depending upon the byproduct credit, which is approximately 3.7 times that of the amount of butanol produced, BFDR, BFPR, FBFPR, and ICCFPR result in a butanol price of 0.55,0.55, 0.14-0.39, 0.12-0.37, and0.12-0.37, and 0.11-0.362kg-1, respectively. The price of butanol was recently reported at $1.212kg-1 by Chemical Marketing Reporter. It should be noted that all three components (acetone, butanol, and ethanol: ABE) diffuse through the pervaporation membrane. Further separation and purification of the solvents would require distillation, which has been considered in this exercise. This article also details the impact of byproduct credit, rate of return, and tax on butanol price.  相似文献   

14.
Häusler RE  Schlieben NH  Flügge UI 《Planta》2000,210(3):383-390
 Transgenic tobacco (Nicotiana tabacum L.) plants with decreased and increased transport capacities of the chloroplast triose phosphate/phosphate translocator (TPT) were used to study the control the TPT exerts on the flux of starch and sucrose biosynthesis, as well as CO2 assimilation, respiration and photosynthetic electron transport. For this purpose, tobacco lines with an antisense repression of the endogenous TPT (αTPT) and tobacco lines overexpressing a TPT gene from Flaveria trinervia (FtTPT) were used. In ambient CO2, there was no or little effect of altered TPT transport activities on either rates of photosynthetic electron transport and/or CO2 assimilation. However, in elevated CO2 (1500 μl · l−1) and low O2 (2%) the TPT exerted strong control on the rate of CO2 assimilation (control coefficient for the wild type; CJA TPT=0.30) in saturating light. Similarly, the incorporation of 14C into starch in high CO2 was increased in tobacco plants with decreased TPT activity, but was reduced in plants overexpressing the TPT from F. trinervia. Thus, the TPT exerted negative control on the rate of starch biosynthesis with a CJStarch TPT=−0.19 in the wild type estimated from a hyperbolic curve fitted to the data points. This was less than the positive control strength on the rate of sucrose biosynthesis (CJSuc TPT=0.35 in the wild type). Theoretically, the positive control exerted on sucrose biosynthesis should be numerically identical to the negative control on starch biosynthesis unless additional metabolic pathways are affected. The rate of dark respiration showed some correlation with the TPT activity in that it increased in FtTPT overexpressors, but decreased in αTPT plants with an apparent control coefficient of CJRes TPT=0.24. If the control on sucrose biosynthesis is referred to as “gain of carbon” (positive control) and the control on starch biosynthesis as well as dark respiration as a “loss of carbon” (negative control) for sucrose biosynthesis and subsequent export, the sum of the control coefficients on dark respiration and starch biosynthesis would be numerically similar to the control coefficient on the rate of sucrose biosynthesis. There was also some control on the rate of photosynthetic electron transport, but only at high light and in elevated CO2 combined with low O2. The control coefficient for the rate of photosynthetic electron transport was CJETR TPT=0.16 in the wild type. Control coefficients were also calculated for plants with elevated and lowered TPT activity. Furthermore, the extent to which starch degradation/glucose utilisation compensates for the lack of triose phosphate export was assessed. The TPT also exerted control on metabolite contents in air. Received: 26 March 1999 / Accepted: 21 August 1999  相似文献   

15.
Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 μg kg−1) and fumonisins (maximum concentration = 34,039 μg kg−1). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 μg kg−1). Beauvericin (maximum concentration = 414.6 μg kg−1) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.  相似文献   

16.
Butanol, a four-carbon primary alcohol (C4H10O), is an important industrial chemical and has a good potential to be used as a superior biofuel. Bio-based production of butanol from renewable feedstock is a promising and sustainable alternative to substitute petroleum-based fuels. Here, we report the development of a process for butanol production from glycerol, which is abundantly available as a byproduct of biodiesel production. First, a hyper butanol producing strain of Clostridium pasteurianum was isolated by chemical mutagenesis. The best mutant strain, C. pasteurianum MBEL_GLY2, was able to produce 10.8 g l−1 butanol from 80 g l−1 glycerol as compared to 7.6 g l−1 butanol produced by the parent strain. Next, the process parameters were optimized to maximize butanol production from glycerol. Under the optimized batch condition, the butanol concentration, yield, and productivity of 17.8 g l−1, 0.30 g g−1, and 0.43 g l−1 h−1 could be achieved. Finally, continuous fermentation of C. pasteurianum MBEL_GLY2 with cell recycling was carried out using glycerol as a major carbon source at several different dilution rates. The continuous fermentation was run for 710 h without strain degeneration. The acetone–butanol–ethanol productivity and the butanol productivity of 8.3 and 7.8 g l−1 h−1, respectively, could be achieved at the dilution rate of 0.9 h−1. This study reports continuous production of butanol with reduced byproducts formation from glycerol using C. pasteurianum, and thus could help design a bioprocess for the improved production of butanol.  相似文献   

17.
The aim of the present study was to examine the physiological and mechanical factors which may be concerned in the increase in energy cost during running in a fatigued state. A group of 15 trained triathletes ran on a treadmill at velocities corresponding to their personal records over 3000m [mean 4.53 (SD 0.28) m · s−1] until they felt exhausted. The energy cost of running (C R) was quantified from the net O2 uptake and the elevation of blood lactate concentration. Gas exchange was measured over 1 min firstly during the 3rd–4th min and secondly during the last minute of the run. Blood samples were collected before and after the completion of the run. Mechanical changes of the centre of mass were quantified using a kinematic arm. A significant mean increase [6.9 (SD 3.5)%, P < 0.001] in C R from a mean of 4.4 (SD 0.4) J · kg−1 · m−1 to a mean of 4.7 (SD 0.4) J · kg−1 · m−1 was observed. The increase in the O2 demand of the respiratory muscles estimated from the increase in ventilation accounted for a considerable proportion [mean 25.2 (SD 10.4)%] of the increase in CR. A mean increase [17.0 (SD 26.0)%, P < 0.05] in the mechanical cost (C M) from a mean of 2.36 (SD 0.23) J · kg−1 · m−1 to a mean of 2.74 (SD 0.55) J · kg−1 · m−1 was also noted. A significant correlation was found between C R and C M in the non-fatigued state (r = 0.68, P < 0.01), but not in the fatigued state (r = 0.25, NS). Furthermore, no correlations were found between the changes (from non-fatigued to fatigued state) in C R and the changes in C M suggesting that the increase in C R is not solely dependent on the external work done per unit of distance. Since step frequency decreased slightly in the fatigued state, the internal work would have tended to decrease slightly which would not be compatible with an increase in C R. A stepwise regressions showed that the changes in C R were linked (r = 0.77, P < 0.01) to the changes in the variability of step frequency and in the variability of potential cost suggesting that a large proportion of the increase in C R was due to an increase in the step variability. The underlying mechanisms of the relationship between C R and step variability remains unclear. Accepted: 15 September 1997  相似文献   

18.
During microbial breakdown of leaf litter a fraction of the C lost by the litter is not released to the atmosphere as CO2 but remains in the soil as microbial byproducts. The amount of this fraction and the factors influencing its size are not yet clearly known. We performed a laboratory experiment to quantify the flow of C from decaying litter into the soil, by means of stable C isotopes, and tested its dependence on litter chemical properties. Three sets of 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L.) were incubated in the laboratory in jars containing 13C-enriched soil (i.e. formed C4 vegetation). Four jars containing soil only were used as a control. Litter chemical properties were measured using thermogravimetry (Tg) and pyrolysis–gas chromatography/mass spectrometry–combustion interface–isotope ratio mass spectrometry (Py–GC/MS–C–IRMS). The respiration rates and the δ13C of the respired CO2 were measured at regular intervals. After 8 months of incubation, soils incubated with both L. styraciflua and C. canadensis showed a significant change in δ13C (δ13Cfinal = −20.2 ± 0.4‰ and −19.5 ± 0.5‰, respectively) with respect to the initial value (δ13Cinitial = −17.7 ± 0.3‰); the same did not hold for soil incubated with P. taeda13Cfinal:−18.1 ± 0.5‰). The percentages of litter-derived C in soil over the total C loss were not statistically different from one litter species to another. This suggests that there is no dependence of the percentage of C input into the soil (over the total C loss) on litter quality and that the fractional loss of leaf litter C is dependent only on the microbial assimilation efficiency. The percentage of litter-derived C in soil was estimated to be 13 ± 3% of total C loss.  相似文献   

19.
Lungfish represent a probable sister group to the land vertebrates. Lungfish and tetrapods share features of respiratory control, including central, peripheral and intrapulmonary CO2 receptors. We investigated whether or not central chemoreceptors in the lungfish, L. paradoxa, are stimulated by CO2 and/or pH. Ventilation was measured by pneumotachography for diving animals. The fourth cerebral ventricle was equipped with two catheters for superfusion. Initially, two control groups were compared: (1) catheterized animals with no superfusion and (2) animals superfused with mock CSF solutions at pH = 7.45; PCO2 = 21 mmHg. The two groups had virtually the same ventilation of about 40 ml BTPS kg−1 h−1 (P > 0.05). Next, PCO2 was increased from 21 to 42 mmHg, while pHCSF was kept at 7.45, which increased ventilation from 40 to 75 ml BTPS kg−1 h−1. Conversely, a decrease of pHCSF from 7.45 to 7.20 (PCO2 = 21 mmHg) increased ventilation to 111 ml BTPS kg−1 h−1. Further decreases of pHCSF had little effect on ventilation, and the combination of pHCSF = 7.10 and PCO2 = 42 mmHg reduced ventilation to 63 ml BTPS kg−1 h−1.  相似文献   

20.
This is an overview of the mutant strain Clostridium beijerinckii BA101 which produces solvents (acetone–butanol–ethanol, ABE) at elevated levels. This organism expresses high levels of amylases when grown on starch. C. beijerinckii BA101 hydrolyzes starch effectively and produces solvent in the concentration range of 27–29 g l−1. C. beijerinckii BA101 has been characterized for both substrate and butanol inhibition. Supplementing the fermentation medium (MP2) with sodium acetate enhances solvent production to 33 g l−1. The results of studies utilizing commercial fermentation medium and pilot plant-scale reactors are consistent with the results using small-scale reactors. Pervaporation, a technique to recover solvents, has been applied to fed-batch reactors containing C. beijerinckii BA101, and solvent production as high as 165 g l−1 has been achieved. Immobilization of C. beijerinckii BA101 by adsorption and use in a continuous reactor resulted in reactor productivity of 15.8 g l−1 h−1. Recent economic studies employing C. beijerinckii BA101 suggested that butanol can be produced at US$0.20–0.25 lb−1 by employing batch fermentation and distillative recovery. Application of new technologies such as pervaporation, fed-batch culture, and immobilized cell reactors is expected to further reduce these prices. Journal of Industrial Microbiology & Biotechnology (2001) 27, 287–291. Received 12 September 2000/ Accepted in revised form 27 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号