首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
von Hippel-Lindau (VHL) disease is a pleioropic disorder featuring a variety of malignant and benign tumors of the eye, central nervous system, kidney, and adrenal gland. Recently the VHL gene has been identified in the chromosomal region 3p25-26. Prognosis and successful management of VHL patients and their descendants depend on unambiguous diagnosis. Due to recurrent hemangioblastomas, a 29-year-old patient without familial history of VHL disease was diagnosed to be at risk for the disease. Histopathological examination of a small renal mass identified a clear cell tumor with a G1 grading. Genetic characterization of the germline and of the renal tumor was performed. Polymerase chain reaction/single strand conformation polymorphism (PCR/SSCP) analysis with primers from the VHL gene identified a deletion of a single nucleotide in exon 2 in the patient's germline and in the tumor, but not in the DNA of his parents. This deletion therefore must be a de novo mutation. Comparative genome hybridization (CGH) and fluorescence in situ hybridization (FISH) analysis of the G1 tumor with differentially labelled yeast artifical chromosome (YAC) clones showed loss of 3p and of the 3p26 signals, respectively. In conclusion, we identified a de novo germline mutation in the VHL gene of a young patient and a somatic chromosome 3p loss at the homologous chromosome 3 in his renal tumor. Our results suggest a recessive mode of inactivation of the VHL gene, providing solid evidence for its tumor-suppressor gene characteristics. Our data show the diagnostic potential of genetic testing, especially in patients without VHL family history. Furthermore, the findings of homozygous inactivation of the VHL gene in a G1 tumor support the notion that the inactivation of the VHL gene is an early event in tumorigenesis of renal cell carcinoma.  相似文献   

2.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

3.
An alternative model has been proposed for the development of clear-cell renal cell carcinoma (RCC) in families where chromosome 3 translocations segregate with the disease. In this model, the existence of a translocation involving chromosome 3 would favour the non-disjunctional loss of the derivative chromosome carrying the 3p segment. Additionally, subsequent somatic mutations in the VLH gene, located in 3p25-26, would inactivate this tumour suppressor gene. In the present work, we describe a new family with two clear-cell RCC affected members and a t(3;8)(p13;q24.1) translocation in two consecutive generations. We observed loss of the derivative chromosome carrying the 3p segment (der(8)) and somatic mutation of the VHL gene in the left-kidney tumoral tissue of the proband. His right-kidney tumour carried a different VHL mutation and loss of heterozygosity (LOH) was not detected. The mother of the proband was also clear-cell RCC-affected but the tumoral tissue analysed did not carry any VHL gene mutations. Another member of the family, a maternal aunt, had a papillary RCC and did not carry this translocation, the LOH on 3p or the VHL somatic mutations. Haplotype analysis of the three affected members revealed that they did not inherit a common region on 3p, confirming the different genetic origin of both tumour types. Finally, the presence of RCC in other non-available members of the family highlights the overall risk for RCC in families with chromosome 3 translocations. In the present work, we have confirmed the proposed mechanism for the development of clear-cell RCC in this family, although we cannot discard the existence of other genes, in addition to VHL, being involved in hereditary RCC.  相似文献   

4.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

5.
Linkage studies with 17q and 18q markers in a breast/ovarian cancer family.   总被引:2,自引:1,他引:1  
Genes on chromosomes 17q and 18q have been shown to code for putative tumor suppressors. By a combination of allele-loss studies on sporadic ovarian carcinomas and linkage analysis on a breast/ovarian cancer family, we have investigated the involvement of such genes in these diseases. Allele loss occurred in sporadic tumors from both chromosome 17p, in 18/26 (69%) cases, and chromosome 17q, in 15/22 (68%) cases. In the three familial tumors studied, allele loss also occurred on chromosome 17 (in 2/3 cases for 17p markers and in 2/2 cases for a 17q allele). Allele loss on chromosome 18q, at the DCC (deleted in colorectal carcinomas) locus, was not as common (6/16 cases [38%]) in sporadic ovarian tumors but had occurred in all three familial tumors. The results of linkage analysis on the breast/ovarian cancer family suggested linkage between the disease locus and 17q markers, with a maximum lod score of 1.507 obtained with Mfd188 (D17S579) polymorphism at 5% recombination. The maximum lod score for DCC was 0.323 at 0.1% recombination. In this family our results are consistent with a predisposing gene for breast/ovarian cancer being located at chromosome 17q21.  相似文献   

6.
Von Hippel-Lindau (VHL) disease is a dominantly inherited disorder predisposing to retinal and CNS hemangioblastomas, renal cell carcinoma (RCC), pheochromocytoma, and pancreatic tumors. Interfamilial differences in predisposition to pheochromocytoma reflect allelic heterogeneity such that there is a strong association between missense mutations and risk of pheochromocytoma. We investigated the mechanism of tumorigenesis in VHL disease tumors to determine whether there were differences between tumor types or classes of germ-line mutations. Fifty-three tumors (30 RCCs, 15 hemangioblastomas, 5 pheochromocytomas, and 3 pancreatic tumors) from 33 patients (27 kindreds) with VHL disease were analyzed. Overall, 51% of 45 informative tumors showed loss of heterozygosity (LOH) at the VHL locus. In 11 cases it was possible to distinguish between loss of the wild-type and mutant alleles, and in each case the wild-type allele was lost. LOH was detected in all tumor types and occurred in the presence of both germ-line missense mutations and other types of germline mutation associated with a low risk of pheochromocytoma. Intragenic somatic mutations were detected in three tumors (all hemangioblastomas) and in two of these could be shown to occur in the wild-type allele. This provides the first example of homozygous inactivation of the VHL by small intragenic mutations in this type of tumor. Hypermethylation of the VHL gene was detected in 33% (6/18) of tumors without LOH, including 2 RCCs and 4 hemangioblastomas. Although hypermethylation of the VHL gene has been reported previously in nonfamilial RCC and although methylation of tumor-suppressor genes has been implicated in the pathogenesis of other sporadic cancers, this is the first report of somatic methylation in a familial cancer syndrome.  相似文献   

7.
Deletions of regions at 13q14 have been detected by various genetic approaches in human cancers including prostate cancer. Several studies have defined one region of loss of heterozygosity (LOH) at 13q14 that seems to reside in a DNA segment of 7.1 cM between genetic markers D13S263 and D13S153. To define the smallest region of overlap (SRO) for deletion at 13q14, we first applied tissue microdissection and multiplex PCR to detect homozygous deletion and/or hemizygous deletion at 13q14 in 134 prostate cancer specimens from 114 patients. We detected deletions at markers D13S1227, D13S1272, and A005O48 in 13 (10%) of these tumor specimens. Of the 13 tumors with deletions, 12 were either poorly differentiated primary tumors or metastases of prostate cancer. To fine-map the deletion region, we then constructed a high-resolution YAC/BAC/STS/EST physical map based on experimental and database analyses. Several markers encompassing the deletion region were analyzed for homozygous deletion and/or hemizygous deletion in 61 cell lines/xenografts derived from human cancers of the prostate, breast, ovary, endometrium, cervix, and bladder, and a region of deletion was defined by duplex PCR assay between markers A005X38 and WI-7773. We also analyzed LOH at 13q14 in the 61 cell lines/xenografts using the homozygosity mapping of deletion approach and 26 microsatellite markers. We found 24 (39%) of the cell lines/xenografts to show LOH at 13q14 and defined a region of LOH by markers M1 and M5. Combination of homozygous or hemizygous deletion and LOH results defined the SRO for deletion to be an 800-kb DNA interval between A005X38 and M5. There are six known genes located in or close to the SRO for deletion. This region of deletion is at least 2 Mb centromeric to the RB1 tumor-suppressor gene and the leukemia-associated genes 1 and 2, each of which is located at 13q14. These data suggest that the 800-kb DNA segment with deletion contains a gene whose deletion may be important for the development of prostate and other cancers. This study also provides a framework for the fine-mapping, cloning, and identification of a novel tumor-suppressor gene at 13q14.  相似文献   

8.
9.
Using differential display PCR, we identified a novel gene upregulated in renal cell carcinoma. Characterization of the full-length cDNA and gene revealed that the encoded protein is a human homologue of the Drosophila melanogaster Tweety protein, and so we have termed the novel protein TTYH2. The orthologous mouse cDNA was also identified and the predicted mouse protein is 81% identical to the human protein. The encoded human TTYH2 protein is 534 amino acids and, like the other members of the tweety-related protein family, is a putative cell surface protein with five transmembrane regions. TTYH2 is located at 17q24; it is expressed most highly in brain and testis and at lower levels in heart, ovary, spleen, and peripheral blood leukocytes. Expression of this gene is upregulated in 13 of 16 (81%) renal cell carcinoma samples examined. In addition to a putative role in brain and testis, the over-expression of TTYH2 in renal cell carcinoma suggests that it may have an important role in kidney tumorigenesis.  相似文献   

10.
11.
von Hippel–Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. We identified germ-line mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3' end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3' end of the known open reading frame.  相似文献   

12.
Transformation and cancer growth are regulated by the coordinate actions of oncogenes and tumor suppressors. Here, we show that the novel E3 ubiquitin ligase HACE1 is frequently downregulated in human tumors and maps to a region of chromosome 6q21 implicated in multiple human cancers. Genetic inactivation of HACE1 in mice results in the development of spontaneous, late-onset cancer. A second hit from either environmental triggers or genetic heterozygosity of another tumor suppressor, p53, markedly increased tumor incidence in a Hace1-deficient background. Re-expression of HACE1 in human tumor cells directly abrogates in vitro and in vivo tumor growth, whereas downregulation of HACE1 via siRNA allows non-tumorigenic human cells to form tumors in vivo. Mechanistically, the tumor-suppressor function of HACE1 is dependent on its E3 ligase activity and HACE1 controls adhesion-dependent growth and cell cycle progression during cell stress through degradation of cyclin D1. Thus, HACE1 is a candidate chromosome 6q21 tumor-suppressor gene involved in multiple cancers.  相似文献   

13.
Molecular genetic studies on HeLa cell-derived nontumorigenic and tumorigenic hybrids have previously localized the HeLa cell tumor-suppressor gene to the long arm of chromosome 11. Extensive molecular and cytogenetic studies on HeLa cells have shown chromosome band 11q13 to be rearranged in this cell line. To determine whether q13 rearrangement is a nonrandom event in cervical carcinomas, six different human papilloma virus (HPV)-positive (HeLa, SiHa, Caski, C4-I, Me180, and Ms751) and two different HPV-negative (C33A and HT3) cell lines were studied. Long-range restriction mapping using a number of q13-specific probes showed molecular rearrangements within 75 kb of INT2 probe in three HPV-positive cell lines (HeLa, SiHa, and Caski) and in an HPV-negative cell line (HT3). FISH using an INT2 YAC identified a breakpoint within the sequences spanned by this YAC in two of the cell lines, HeLa and Caski. INT2 cosmid derived from this YAC showed deletion of cosmid sequences in two other cell lines, SiHa and C33A. These two cell lines, however, retained cosmid sequences of Cyclin D1, a probe localized 100 kb proximal to INT2. Deletions being the hallmark of a tumor-suppressor gene, we conclude that the 100-kb interval between the two cosmids might contain sequences of the cervical carcinoma tumor-suppressor gene.  相似文献   

14.
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degeneration. This group of disorders essentially leads to blindness due to mutations in different genes. The genetic basis affected by sporadic and inherited autosomal dominant, autosomal recessive or X-linked mutations is complex. In humans, RP is in most cases associated with missense mutations in the rhodopsin gene (RHO). RHO plays an important role in phototransduction pathways. So far, few studies have described associations between chromosomal alterations and RP. In this study, we present a case report of a premature, 32-week-old male baby who suffered from retinopathy, facial dysmorphisms and other disorders. His chromosomes were analyzed by conventional and high-resolution chromosomal techniques. This analysis revealed structural aberrations on chromosomes 3 and 5 with an apparently balanced chromosomal translocation with karyotype 46,XY,t(3;5)(q25;q11.2). Remarkably, the 3q breakpoint on the long arm of chromosome 3 is located close to the physical RHO chromosomal gene location. In this study, we describe presumably for the first time a possible association between a 3q;5q chromosomal alteration and RP. We conclude that the new detected chromosomal translocation may lead either to loss or inactivation of the intragenic RHO gene or its respective gene regulatory region. As a consequence, the chromosomal aberration may be responsible for retinitis pigmentosa.  相似文献   

15.
We have identified a family afflicted over multiple generations with posterior fossa tumors of infancy, including central nervous system (CNS) malignant rhabdoid tumor (a subset of primitive neuroectodermal tumors, or PNET) and choroid plexus carcinoma. Various hereditary tumor syndromes, including Li-Fraumeni syndrome, Gorlin syndrome, and Turcot syndrome, have been linked to increased risk of developing CNS PNETs and choroid plexus tumors. Malignant rhabdoid tumors of the CNS and kidney show loss of heterozygosity at chromosome 22q11. The hSNF5 gene on chromosome 22q11 has recently been identified as a candidate tumor-suppressor gene in sporadic CNS and renal malignant rhabdoid tumors. We describe a family in which both affected and some unaffected family members were found to have a germline splice-site mutation of the hSNF5 gene, leading to exclusion of exon 7 from the mature cDNA and a subsequent frameshift. Tumor tissue shows loss of the wild-type hSNF5 allele, in keeping with a tumor-suppressor gene. These findings suggest that germline mutations in hSNF5 are associated with a novel autosomal dominant syndrome with incomplete penetrance that predisposes to malignant posterior fossa brain tumors in infancy.  相似文献   

16.
The HeLa cell (a cervical carcinoma cell line) tumor-suppressor gene has been localized to the long arm of chromosome 11 by molecular genetic studies of nontumorigenic and tumorigenic hybrids derived from normal chromosome 11 x HeLa cell fusions. In the present study, 33 primary cervical carcinoma samples were analyzed using chromosome 11-specific polymorphic DNA markers. The RFLP analysis indicated a somatic loss of chromosome 11 heterozygosity in 10 (30%) of the primary tumors. Preferential loss of the long arm of the chromosome was observed in two of the primary tumors. In addition, at least eight-fold amplification of sequences in the q13 region, including those coding for the fibroblast growth factor-related gene (int-2), was observed in one of the primary tumors. These results suggest a possible role for gene(s) localized to chromosome 11, possibly that localized to the long arm in the development and/or progression of cervical carcinomas.  相似文献   

17.
Familial non-syndromic clear cell renal cell carcinoma   总被引:1,自引:0,他引:1  
The diagnosis of familial non-syndromic clear cell renal cell carcinoma is one of exclusion. In families presenting with clear cell RCC a germline VHL mutation and a constitutional translocation of chromosome 3 must be excluded before familial non-syndromic clear cell RCC can be diagnosed. Large familial non-syndromic clear cell RCC kindreds are uncommon and a predisposing gene has not been identified. However inheritance is autosomal dominant in most cases and age at onset is earlier than in sporadic cases. Recognition and appropriate screening of familial non-syndromic clear cell RCC cases will reduce morbidity and mortality. Large scale collaborative linkage studies may provide a basis for the identification of familial non-syndromic clear cell RCC susceptibility gene(s).  相似文献   

18.
Neuroblastomas often show loss of heterozygosity of the chromosomal region 1p36 (LOH 1p), probably reflecting loss of a tumor-suppressor gene. Here we describe three neuroblastoma tumors and two cell lines in which LOH 1p results from an unbalanced translocation between the p arm of chromosome 1 and the q arm of chromosome 17. Southern blot and cytogenetic analyses show that in all cases the chromosome 17 homologue from which the 1;17 translocation was derived is still present and intact. This suggests a model in which a translocation between the short arm of chromosome 1 and the long arm of chromosome 17 takes place in the S/G2 phase of the cell cycle and results in LOH 1p. Nonhomologous mitotic recombination in the S/G2 phase is a novel mechanism of LOH.  相似文献   

19.
BACKGROUND: Von Hippel-Lindau (VHL) disease is a familial cancer syndrome that has a dominant inherited pattern which predisposes affected individuals to a variety of tumours. The most frequent tumors are hemangioblastomas of the central nervous system and retina, renal cell carcinoma (RCC), and pheochromocytoma. The recent identification and characterization of the VHL gene on human chromosome 3p and mutational analyses confirms the VHL gene functions as a classical tumor suppressor. Not only are mutations in this gene responsible for the VHL syndrome, but mutations are also very frequent in sporadic RCC. MATERIALS AND METHODS: VHL expression in human kidney and during embryogenesis, was analyzed by in situ mRNA hybridization with 35S-labeled antisense VHL probes, derived from human and mouse cDNAs, on cryosections of human fetal kidney and paraffin sections of murine embryos. RESULTS: In human fetal kidney, there was enhanced expression of VHL within the epithelial lining of the proximal tubules. During embryogenesis, VHL expression was ubiquitous in all three germ cell layers and their derivatives. Expression occurred in the cerebral cortex, midbrain, cerebellum, retina, spinal cord, and postganglionic cell bodies. All organs of the thoracic and abdominal cavities expressed VHL, but enhanced expression was most apparent in the epithelial components of the lung, kidney, and eye. CONCLUSIONS: In human fetal kidney, the enhanced epithelial expression of the VHL gene is consistent with the role of this gene in RCC. There is widespread expression of the VHL gene during embryogenesis, but this is pronounced in areas associated with VHL phenotypes. These findings provide a histological framework for investigating the physiological role of the VHL gene and as basis for further mutational analysis.  相似文献   

20.
Interstitial loss of all or part of the long arm of chromosome 5, or del(5q), is a frequent clonal chromosomal abnormality in human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid leukemia (AML), and is thought to contribute to the pathogenesis of these diseases by deleting one or more tumor-suppressor genes. Although a major commonly deleted region (CDR) has been delineated on chromosome band 5q31.1 (refs. 3-7), attempts to identify tumor suppressors within this band have been unsuccessful. We focused our analysis of gene expression on RNA from primitive leukemia-initiating cells, which harbor 5q deletions, and analyzed 12 genes within the CDR that are expressed by normal hematopoietic stem cells. Here we show that the gene encoding alpha-catenin (CTNNA1) is expressed at a much lower level in leukemia-initiating stem cells from individuals with AML or MDS with a 5q deletion than in individuals with MDS or AML lacking a 5q deletion or in normal hematopoietic stem cells. Analysis of HL-60 cells, a myeloid leukemia line with deletion of the 5q31 region, showed that the CTNNA1 promoter of the retained allele is suppressed by both methylation and histone deacetylation. Restoration of CTNNA1 expression in HL-60 cells resulted in reduced proliferation and apoptotic cell death. Thus, loss of expression of the alpha-catenin tumor suppressor in hematopoietic stem cells may provide a growth advantage that contributes to human MDS or AML with del(5q).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号