首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

2.
A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.  相似文献   

3.
Optimal substrate feeding strategy in bioreactor operation was investigated to increase the production of secondary metabolite in a high density culture of plant cell. It was accomplished by the previously proposed structured kinetic model that describes the cell growth and synthesis of the secondary metabolite, berberine, in a batch suspension culture ofThalictrum rugosum. Four types of operation strategies for sugar feeding intoT. rugosum culture were proposed based on the model, which were the periodic fedbatch operations to maintain the cell activity, the cell viability, and the specific production rate, and the perfusion operation to maintain the specific production rate. From the simulation results of these strategies, it could be found that the periodic fed-batch operation and the perfusion operation could achieve the higher volumetric production of berberine (mg berberine/L) and specific production yield (mg berberine/g dry cell weight) than those of batch cultures. Although the highest productivity (mg berberine/day) of berberine could be achieved by the periodic fed-batch operation to maintain the cell activity compared with the other strategies in the periodic fed-batch operations, the specific production yield was low due to the higher maximum dry cell weight than other cases. The periodic fed-batch operation to maintain cell viability resulted in the highest volumetric production of berberine and specific production yield compared with the other strategies. In the cases of maintaining the specific production rate, the per-formance of the periodic fed-batch operation was better than that of the perfusion operation in the respect of the volumetric production and productivity of berberine. In order to increase the volumetric production of berberine and to get the highest specific production yield, the periodic fed-batch operation to maintain cell viability could be chosen as the optimal operating strategy in high density, culture ofT. rugosum plant cell.  相似文献   

4.
Innovation in monoclonal antibody (mAb) production continues to be driven by cell engineering strategies to increase yield and improve product quality. In a previous study, to investigate the effectiveness of transporter overexpression strategies, we prepared a taurine transporter‐overexpressing host cell line (DXB11/TAUT) that produced a higher proportion of high‐mAb‐titer strains than did the parent host cell line. In the current study, we selected a single DXB11/TAUT/mAb1 strain that remained viable for longer (up to 1 month) under common fed‐batch culture conditions, and the improvement in viability could be attributed to its improved metabolic properties. It was also more productive (up to >100 pg/cell/day) and yielded more mAb1 (up to 8.1 g/L/31 days) than the parent cell line, and the mAb1 it produced was of comparable quality. These results suggested that this host cell engineering strategy has unique potential for the improvement of mAb‐producing Chinese hamster ovary (CHO) cells; for example, it may be appropriate for high cell density perfusion culture. TAUT‐overexpressing cell lines rapidly accumulated the byproduct alanine, and our challenge in the present study was to apply a strategy for modulating cell metabolism to utilize this byproduct to achieve a high mAb yield in a shorter culture period. To accomplish this, we genetically modified the DXB11/TAUT/mAb1 strain to cooverexpress alanine aminotransferase 1 (ALT1). The resulting DXB11/TAUT/mAb1/ALT1 cooverexpressing strain gave a higher mAb yield in a shorter culture period (5.9 g/L/14 days). It is usually difficult to drive the overexpression of two functional genes while balancing competing goals. However, forced cooverexpression of TAUT and ALT1 in our DXB11/TAUT/mAb1/ALT1 strain resulted in a higher proliferation than the DXB11/TAUT/mAb1 strain, with an ideal balance between cell viability and productivity. Therefore, we have demonstrated a strategy capable of achieving an optimum balance among the goals of cell viability, productivity, and proliferative capacity. Biotechnol. Bioeng. 2013; 110: 2208–2215. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The effects of oxidoreduction potential (ORP) regulation on the process of propionic acid production by Propionibacterium freudenreichii CCTCC M207015 have been investigated. Potassium ferricyanide and sodium borohydride were determined as ORP control agents through serum bottle experiment. In batch fermentation, cell growth, propionic acid and by-products distribution were changed with ORP levels in the range of 0–160 mV. Based on these analysis results, an ORP-shift control strategy was proposed: at first 156 h, ORP was controlled at 120 mV to obtain higher cell growth rate and propionic acid formation rate, and then it was shifted to 80 mV after 156 h to maintain the higher propionic acid formation rate. By applying this strategy, the optimal parameters were obtained as follows: the propionic acid concentration 45.99 g L?1, productivity 0.192 g L?1 h?1, the proportion of propionic acid to total organic acids 92.26 % (w/w) and glycerol conversion efficiency 76.65 %. The mechanism of ORP regulation was discussed by the ratio of NADH/NAD+, ATP levels, and metabolic flux analysis. The results suggest that it is possible to redistribute energy and metabolic fluxes by the ORP-shift control strategy, and the strategy could provide a simple and efficient tool to realize high purity propionic acid production with glycerol as carbon source.  相似文献   

6.
High-titer adenovirus vector production in 293S cell perfusion culture   总被引:1,自引:0,他引:1  
Human 293S cells culture for recombinant adenovirus production is traditionally carried out in batch at a maximum of 6 x 10(5) cells/mL. A previous report demonstrated that fed-batch, applied to the adenovirus/293S cells system, improves the volumetric production of viral proteins by increasing the cell density at which cells can be infected, up to 2 x 10(6) cells/mL, without reducing the per-cell yield of product. To increase this cell density limit, the adenovirus production was performed in a perfusion system where the cells were separated by means of a tangential flow filtration device. 293S cell growth to 14 x 10(6) cells/mL was achieved in 10 days, at a medium renewal rate of 1 volume of medium per reactor volume and day (VVD). For adenovirus production, three 293S cell cultures were perfused at 1 VVD in parallel and infected at an average density of 8 x 10(6) cells/mL. One of the cultures was set at 37 degrees C and the two others at 35 degrees C. After a rapid initial cell loss, the average cell density stabilized at 5.75 x 10(6) cells/mL, 12 h postinfection, which was 8 times higher than the cell density in the batch control. This allowed the production of 3.2 x 10(9) infectious viral particles/mL (IVP/mL) at 37 degrees C and 7.8 x 10(9) IVP/mL at 35 degrees C, this last result being 5.5 times higher than the control. To our knowledge, this nonconcentrated titer is the highest value that has ever been published for adenovirus vector production. These observations lead to the conclusion that perfusion is an efficient tool to maintain, at high cell density, a specific production rate level sufficient to increase significantly the adenovirus volumetric production. Furthermore, it shows that perfusion at 35 degrees C can improve viral titer by 2.4-fold compared to 37 degrees C, in accordance with a previous study on adenovirus batch production.  相似文献   

7.
The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.  相似文献   

8.
Lactobacillus brevis 3-A5 was isolated and expected to produce mannitol efficiently by regulating pH in batch and fed-batch fermentations. In 48 h batch fermentations with free and constant pH, the optimal pH for cell growth and mannitol production in the first 24 h of incubation was 5.5, whereas that for mannitol production in the second 24 h of incubation was 4.5. To achieve high cell density and mannitol yield simultaneously, a dual-stage pH control strategy was proposed based on the kinetic analysis of mannitol production. The pH value was controlled at 5.5 for the first 12 h of fermentation and subsequently shifted to 4.5 until the fermentation was completed. Under dual-stage pH control fermentation, a 103 g/L yield of mannitol with a volumetric production rate of 3.7 g/L/h was achieved after 28 h. The dual-stage pH control fed-batch fermentation strategy was further developed to improve mannitol yield, wherein the yield increased by 109 % to 215 g/L after 98 h of fermentation. This value is the highest yield of mannitol ever reported using L. brevis.  相似文献   

9.
Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2‐day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 1010 cells L?1, a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:607–615, 2014  相似文献   

10.
The combined effect of superficial gas velocity, pH, initial phosphate concentration, and light intensity on cell growth was investigated for the mass production of cyanobacterial cells. The light intensity was manipulated to maintain a specific irradiation rate (q(i)) at a constant level for high cell density culture. The optimum condition for the batch culture was achieved at a superficial gas velocity of 2.0 cm/s, pH 7.0, and an initial phosphate concentration of 55 mg/l when the specific irradiation rate was controlled above 11.5 micromol/s/g dry cell. In this condition, the specific growth rate and cell productivity were 1.47 day(-1) and 0.98 g dry cell/l/day, respectively.  相似文献   

11.
In this study, callus and cell suspension were induced from seedlings of licorice (G. uralensis). In addition, it was revealed that the appropriate concentration of sucrose could promote the callus growth and increase the content of polysaccharide. The methyl jasmonate (MJ) and phenylalanine (PHE) could enhance the callus growth and content of flavonoids for G. uralensis. For producing more flavonoids and polysaccharide, two-stage cultivation was performed. In the first step, 30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day of culture to enhance cell production and metabolite production. In a two-stage cultivation process, PHE (2 mM) and MJ (5 mg L?1) were added into a 5-L balloon-type bubble bioreactor after 10 days of culture. Using a fed-batch cultivation strategy (30 g L?1 sucrose was fed into a 5-L balloon-type bubble bioreactor on 8th day), polysaccharide production was enhanced to 1.19 g L?1, which was 2.12-fold greater than that in batch cultivation. The flavonoids yield (55.42 mg L?1) which was about 22 % higher than that in batch cultivation was obtained on 21st day. In a two-stage cultivation process, the polysaccharide content was increased by 1.14- and 2.12-fold compared with fed-batch cultivation and batch cultivation on 15th day. Meanwhile, total flavonoids yield (132.36 mg L?1) on 15th day, was increased by 2.26- and 2.67-fold compared with fed-batch cultivation and batch cultivation. In conclusion, two-stage cultivation process combined with the sucrose and elicitor treatment could promote both the callus growth and the secondary metabolites accumulation.  相似文献   

12.
Process intensification in biomanufacturing has attracted a great deal of interest in recent years. Manufacturing platform improvements leading to higher cell density and bioreactor productivity have been pursued. Here we evaluated a variety of intensified mammalian cell culture processes for producing monoclonal antibodies. Cell culture operational modes including fed‐batch (normal seeding density or high seeding density with N‐1 perfusion), perfusion, and concentrated fed‐batch (CFB) were assessed using the same media set with the same Chinese Hamster Ovary (CHO) cell line. Limited media modification was done to quickly fit the media set to different operational modes. Perfusion and CFB processes were developed using an alternating tangential flow filtration device. Independent of the operational modes, comparable cell specific productivity (fed‐batch: 29.4 pg/cell/day; fed‐batch with N‐1 perfusion: 32.0 pg/cell/day; perfusion: 31.0 pg/cell/day; CFB: 20.1 – 45.1 pg/cell/day) was reached with similar media conditions. Continuous media exchange enabled much higher bioreactor productivity in the perfusion (up to 2.29 g/L/day) and CFB processes (up to 2.04 g/L/day), compared with that in the fed‐batch processes (ranging from 0.39 to 0.49 g/L/day), largely due to the higher cell density maintained. Furthermore, media cost per gram of antibody produced from perfusion was found to be highly comparable with that from fed‐batch; and the media cost for CFB was the highest due to the short batch duration. Our experimental data supports the argument that media cost for perfusion process could be even lower than that in a fed‐batch process, as long as sufficient bioreactor productivity is achieved. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:867–878, 2017  相似文献   

13.
Human-human hybridomas which secrete a human monoclonal antibody (h-MoAb) against hepatitis B virus surface antigen showed growth associated production kinetics. The rate of h-MoAb production rapidly decreased after cell growth was arrested in a perfusion culture, even if the perfusion rate was increased. A continuous suspended-perfusion culture, in which both culture broth and culture supernatant are continuously harvested and the same volume of fresh medium is continuously fed into the reactor, was developed to maintain continuous growing conditions during cultivation. In this culture system, the production of h-MoAb continued for more than 50 days with an average productivity of 5.0 mg/l of working volume/day. A semicontinuous immobilized-perfusion culture in which parts of the cells are repeatedly removed from the immobilized reactor was another useful technique for the long term cultivation of these h-h hybridomas. As an average h-MoAb production rate, 62 mg/l of immobilized-bed volume/day was achieved for 65 days of cultivation using a ceramic matrix reactor, and 327 mg/l/day was achieved over 47 days of cultivation using a hollow fiber reactor equipped with Cultureflo MTM Thus, the antibody productivity per reactor volume per day by the semicontinuous immobilized-perfusion culture was much higher than that of the continuous perfusion culture in an agitation reactor.  相似文献   

14.
The aim of the present study was to optimize the feeding proportion of glucose and propanol for erythromycin biosynthesis by real-time monitoring and exploring its limited ratio by the on-line multi-frequency permittivity measurement. It was found that the capacitance values were sensitive to the variation of biomass concentration and microbial morphology as well as the true state of cell growth. It was most favorable to both cell growth and secondary metabolism to keep the ratio of glucose to propanol at 4.3 (g/g). The specific growth rate calculated by the capacitance measurement correctly and accurately reflected the cell physiological state. An appropriate feed rate of propanol was crucial for cell growth and secondary metabolism, as well as to improve the quality of erythromycin-A. In addition, the erythromycin production titer (10,950 U/mL) was further enhanced by 4 % when the propanol feed was regulated by step-down strategy based on both OUR (oxygen uptake rate) and the on-line monitoring capacitance.  相似文献   

15.
This study describes the development work to shorten the monoclonal antibody (mAb) production time in CHO cell cultures from 14 days to 8 days without impacting mAb titer or product quality. The proposed process increases cell inoculation densities up to 25× higher than a typical seeding density in the final production bioreactor, with the implementation of an ATF? perfusion system in the N ? 1 stage. Similar antibody titer and N‐glycosylation profiles were reached in 8 days using the 25× seed condition, as in 14 days using the 1× seed condition. Acidic variants in the 25× seed condition were 12–20% lower than the 1× seed condition. These results indicate that an accelerated 8‐day antibody production process utilizing a 25× seeding strategy has the potential of achieving similar product quality and titer as the 1× seeding condition in a 14‐day production process. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:829–832, 2013  相似文献   

16.
The production of an intracellular secondary metabolite rosmarinic acid (RA) by plant cell suspensions of Anchusa officinalis cultivated with intermittent medium exchange is investigated. Initially, a two-stage perfusion culture method was employed. After being cultured in the batch mode for ca. 6 days in B5 medium plus 3% sucrose, 1 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.1 mg/L kinetin (2,4-D B5 medium), Anchusa culture was cultivated to high cell density by perfusion during the growth stage using a hormone-free Gamborg B5 medium supplemented with 6% sucrose. This was followed by a production stage, in which a complete medium exchange into B5 medium plus 3% sucrose and 0.25 mg/L naphthleneacetic acid (NAA) was conducted. The two-stage perfusion culture had a higher maximum culture RA concentration but a lower RA content per cell than the batch stock culture maintained in the 2,4-D B5 medium. Higher culture RA concentration was due primarily to high cell density. The high packed cell volume, however, seemed to reduce the synergistic effect of NAA on RA synthesis. Subsequently, a single-stage perfusion culture method was investigated. The best result was obtained by growing the culture in the batch mode for ca. 10 days using B5 medium supplemented with 3% sucrose and 0.25 mg/L NAA, followed by perfusing the culture with B5 medium plus 6% sucrose and 0.25 mg/L NAA at a constant perfusion rate of 0.1/day. A maximum cell dry weight of 35 g/L and a RA concentration of almost 4 g/L were achieved. This is the highest RA concentration ever reported in the Anchusa culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 106 cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 107 to 1.8 × 107 cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.  相似文献   

18.
It has been proved that co-cultivation of human neuroblastoma cells and human fibrolast cells can enhance nerve cell growth and the production of BDNF in perfusion cultivation. In batch co-cultivation, maximum cell density was increased up to 1.76×106 viable cells/mL from 9×105 viable cells/mL of only neuroblastoma cell culture. The growth of neuroblastoma cells was greatly improved by culturing both nerve and fibroblast cells in a perfusion process, maintaining 1.5×106 viable cells/mL, which was much higher than that from fed-batch cultivation. The nerve cell growth was greatly enhanced in both fed-batch and perfusion cultivations while the growth of fibroblast cells was not. It strongly implies that the factors secreted from, human fibroblast cells and/or the environments of co-culture system can enhance both cell growth and BDNF secretion. Specific BDNF production rate was not enhanced in co-cultures; however, the production period was increased as the cell growth was lengthened in the co-culture case. Competitive growth between nerve cells and fibroblast cells was not observed in all cases, showing no changes of fibroblast cell growth and only enhancement of the neuroblastoma cell growth and overall BDNF production. It was also found that the perfusion cultivation was the most appropriate process for cultivating two cell lines simultaneously in a bioreactor.  相似文献   

19.
Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L?1 day?1. The results showed that 0.74 g L?1 of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L?1 was achieved. This represented an increase of 0.18 g L?1 in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.  相似文献   

20.
Since it was first introduced in late 1990s Wave bioreactor has been used for protein production by mammalian and insect cell lines. However, using Wave bioreactor to produce human monoclonal antibody by stable Drosophila Schneider 2 (S2) cell transfectants has not been reported before. In this study, S2 cells were co-transfected with an inducible vector expressing human monoclonal antibody heavy and light chains, respectively, specific for hemagglutinin (HA) of H5N1 influenza virus. Stable S2 transfectant clone was selected by limiting dilution assay. Stable S2 transfectant clone that produce the highest amount of human monoclonal antibody was inoculated into two 2-l disposable cellbags, where cell growth and antibody production were compared between batch and perfusion cultures using Wave bioreactor. Here, we report that maximum viable cell density reached 1.06?×?10(7) cells/ml in batch culture; whereas 1.04?×?10(8)?cells/ml was achieved in perfusion culture. The maximum volumetric antibody productivity in batch culture was 52?mg/l/day; while perfusion culture yielded 1,437?mg/l/day. As a result, the total antibody production was 201?mg in batch culture and 8,212?mg in perfusion culture. The antibody produced by both cultures displays full neutralizing activity. Thus, our results provide strong support for using Wave bioreactor in perfusion culture for a large-scale production of human monoclonal antibody by stable S2 cell transfectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号