首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

2.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

3.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

4.
We have investigated bacteriophage φX174 RF 2 DNA replication by electron microscopy. Three different, types of replicative intermediates were observed: rolling circles, partially duplex DNA circles and structures consisting of two DNA circles connected at a single point.Rolling circles with a single-stranded or partially double-stranded DNA tail were both observed. After cleavage of the rolling circles with the restriction endonuclease from Providentia stuartii 164 (PstI) the startpoint of rolling circle replication could be located at 21 map units from the PstI cleavage site in agreement with the previously determined position of the origin of φX RF DNA replication.Partially duplex DNA circles consist of circular viral DNA strands and incomplete complementary DNA strands. After cleavage of these molecules with PstI information about the startpoints of the synthesis of the complementary DNA strand was obtained.The connected DNA circles always contain one completely double-stranded DNA circle whereas the other circle consists of either single-stranded, partially duplex or completely duplex DNA.Part of the duplex-to-duplex DNA circles represent the well-known figure eight or catenated circular dimers. The other connected DNA circles presumably represent replication intermediates which arise by the association of the end of the genome length tail of the rolling circle with the origin-terminus region. This is suggested by the fact that the point of contact between the two DNA circles is located at approximately 21 map units from the Pst1 cleavage site, i.e. at the origin-terminus region of the φX genome. The connected DNA circles may be intermediates in the circularization and cleavage of the genome-length tail of the rolling circles in vivo.A model for φX174 RF DNA replication in vivo summarizing the data obtained by biochemical (Baas et al., 1978) and electron microscopic analysis of replicative intermediates is presented (Fig. 9).  相似文献   

5.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

6.
Escherichia coli NY73, possessing a temperature-sensitive mutation in the dnaG locus, was rendered sensitive to bacteriophage phiX174 by P1 transduction. phiX174 reproduces in this strain at 30 C but not at 40 C. All three stages of phiX174 replication, parental replicative form (RF) synthesis, RF replication, and progeny single-stranded DNA synthesis, are thermolabile in this mutant. Competition-annealing data show that both plus- and minus-strand synthesis are equally inhibited after shift up to 40 C during RF replication. We conclude that the dnaG gene product is required for the synthesis of both strands of phiX RF during RF replication and of the complementary strand and viral progeny strands during stages I and III, respectively.  相似文献   

7.
A chimeric single-stranded DNA phage, M13Gori1, has been formed as a result of the in vitro insertion of a 2216 base-pair HaeII fragment of bacteriophage G4 replicative form DNA into the replicative form DNA of bacteriophage M13. The inserted G4 DNA carries the dnaG-dependent origin for G4 complementary strand synthesis. The cloned G4 origin functions both in vivo and in vitro in the conversion of M13Gori1 single-stranded viral DNA to the duplex replicative form by a rifampicin-resistant mechanism. Labelling of the 3′ terminus of the single discontinuity in M13Gori1 replicative form II molecules synthesized in crude extracts and subsequent restriction analysis indicate that M13Gori1 complementary strand synthesis can be initiated at either the RNA polymeraseprimed M13 origin or at the dnaG-primed G4 origin. The M13Gori1 complementary strand initiated at the G4 origin terminates in the vicinity of the G4 origin after progressing around the circular template and traversing the M13 origin region, indicating the absence of a specific nucleotide sequence in the M13 origin for termination of the newly formed complementary strand. The ability of this chimeric phage to utilize the cloned G4 origin in vivo even in the presence of the presumed M13 pilot protein (gene 3 protein) indicate that the nucleotide sequence of the replication origin is sufficient for recognizing the appropriate initiation enzymes. Since decapsidation of M13 is tightly coupled to replicative form formation, initiation at the G4 origin, located over 1000 nucleotides from the M13 complementary strand origin, indicates that widely separated nucleotide sequences contained in the filamentous virion can be exposed to the cell cytoplasm during eclipse.  相似文献   

8.
On incubation with deoxynucleoside triphosphates and rATP, ether-treated (nucleotide-permeable) cells convert the single-stranded DNA of adsorbed bacteriophage φX174 particles to the double-stranded replicative forms. The main final product is the doubly-closed replicative form, RFI; a minor product is the relaxed form II. Interruptions in the nascent complementary strand of the viral DNA result in pieces corresponding to 5 to 10% of the unit length of the viral DNA. Pieces of similar size were previously seen in studies of the replication synthesis of Escherichia, coli DNA in ether-treated cells. Since the conversion of the single-stranded φX174 DNA to replicative form is known to be mediated entirely by host factors, it is argued that the viral single strands are replicated by macromolecular factors involed in the replication of E. coli DNA and that this is the reason why new φX174 DNA appears in short pieces. Possible consequences of this interpretation for an understanding of duplex replication are discussed. The joining of the short pieces of complementary φX174 DNA is inhibited at low deoxynucleoside triphosphate concentration (1 μM) but not by nicotinamide mononucleotide, which inhibits the NAD-dependent DNA ligase and blocks the conversion of RFII to RFI in ether-treated cells. The results are discussed with respect to previous studies on cell-DNA synthesis (Geider, 1972). It is argued that there are two polynucleotide joining mechanisms, of which only one requires NAD-dependent ligase action.  相似文献   

9.
In a preceding paper (Schröder and Kaerner, 1972) a rolling circle mechanism has been described for the replication of bacteriophage φX174 replicative form. Replication involved nicking and elongation of the viral (positive) strand component of the RF molecule resulting in the displacement of a single-strand tail of increasing length. The synthesis of the new complementary (negative) strand on the single-strand tails appears to be initiated with considerable delay and converts the tail into double-stranded DNA. Before the new negative strand is completed the replicative intermediates split into (I) a complete RF molecule containing the “old” negative and the new positive strand, and (II) a linear, partially double-stranded “tail” consisting of the complete old positive strand and a fragment of the new negative strand.The present study is concerned with the fate during RF replication of these fragments of the rolling circles. Those RFII molecules containing the old negative strands appear to go into further replication rounds repeatedly. Some of the tails were found in the infected cells in their original linear form. “Gapped” RFII molecules, which have been described earlier by Schekman and co-workers (Schekman &; Ray, 1971; Schekman et al., 1971), are supposed to originate from the tails of rolling circle intermediates by circularization of their positive strand components. Evidence is provided by our experiments that even late during RF replication these gaps are present only in the negative strands of RFII. Appropriate chase experiments indicated that the tails finally are converted to RFI molecules. Progeny RFI molecules could not be observed to start new replication rounds under our conditions although we cannot exclude that this might happen to some minor extent.The results presented suggest that the master templates for RF replication are the first negative strands to be formed, rather than the parental positive strands.  相似文献   

10.
The Parvovirus H-1 replicates autonomously in hamster embryo cells. A DNA synthetic event, called HA-DNA synthesis, upon which subsequent viral RNA and viral hemagglutinin synthesis is dependent, is initiated in late S phase of the infected cell (18). It was postulated that HA-DNA represents parental viral replicative form DNA (RF DNA). This study describes the isolation and characterization of H-1 RF DNA as part of the continuing study of the mechanisms and control of DNA replication in the eukaryotic cell. The H-1 RF DNA is a linear duplex molecule containing the viral strand and its complement. The complementary strands of the RF DNA have been separated by equilibrium density gradient centrifugation. The RF DNA has a buoyant density of 1.705 in neutral CsCl and an estimated guanine plus cytosine (GC) content of 45.9%. It has a sedimentation coefficient of 17S. The calculated molecular weight of 3.7 x 10(6) is twice that of the single-stranded virion DNA. H-1 virions contain DNA that is homogeneous and free of complementary strands.  相似文献   

11.
The structure of replicating adenovirus 2 DNA molecules   总被引:40,自引:0,他引:40  
R L Lechner  T J Kelly 《Cell》1977,12(4):1007-1020
Adenovirus 2 (Ad2)-infected KB cells were exposed to a 2.5 min pulse of 3H-thymidine at 19 hr after infection. The labeled DNA molecules were separated from cell DNA and mature Ad2 DNA by sucrose gradient sedimentation and CsCI equilibrium centrifugation under conditions designed to minimize branch migration and hybridization of single strands. Electron microscopy-of fractions containing radioactivity revealed two basic types of putative replicating molecules: Ad2 length duplex DNA molecules with one or more single-stranded branches (type I) and Ad2 length linear DNA molecules with a single-stranded region extending a variable distance from one end (type II). Length measurements, partial denaturation studies and 3′ terminal labeling experiments were consistent with the following model for Ad2 DNA replication. Initiation of DNA synthesis occurs at or near an end of the Ad2 duplex. Following initiation, a daughter strand is synthesized in the 5′ to 3′ direction, displacing the parental strand with the same polarity. This results in the formation of a branched replicating molecule (type I). Initiations at the right and left molecular ends are approximately equal in frequency, and multiple initiations on the same replicating molecule are common. At any given displacement fork in a type I molecule, only one of the two parental strands is replicated. Two nonexclusive mechanisms are proposed to account for the replication of the other parental strand. In some cases, before completion of a round of displacement synthesis initiated at one end of the Ad2 duplex, a second initiation will occur at the opposite end. In these doubly initiated molecules, both parental strands serve as templates for displacement synthesis. Two type II molecules are generated when the oppositely moving displacement forks meet. Alternatively, displacement synthesis may proceed to the end of the Ad2 duplex, resulting in the formation of a daughter duplex and a parental single strand. Replication of the displaced parental strand is then initiated at or near its 3′ terminus, producing a type II molecule. Daughter strand synthesis proceeds in the 5′ to 3′ direction in type II molecules generated by either mechanism, and completion of synthesis results in the formation of a daughter duplex.  相似文献   

12.
Short pulses (30 sec at 32 C) of (3)H-thymidine were found primarily in the viral strands of replicating fd deoxyribonucleic acid (DNA), even at a time when most DNA being synthesized was duplex DNA. Much of the labeled viral strand DNA was longer than unit length, but some was shorter than unit length. Most of the corresponding complementary-strand DNA was recovered in closed supercoiled duplex molecules, even for short pulses; the remainder of the complementary-strand DNA was found in replicative intermediates in pieces shorter than unit length. Some of the viral strands in open replicating DNA lacked a corresponding complementary strand.  相似文献   

13.
The gene A protein of bacteriophage phi X 174 initiates replication of super-twisted RFI DNA by cleaving the viral (+) strand at the origin of replication and binding to the 5' end. Upon addition of E. coli rep protein (single-stranded DNA dependent ATPase), E. coli single-stranded DNA binding protein and ATP, complete unwinding of the two strands occurs. Electron microscopic analyses of intermediates in the reaction reveal that the unwinding occurs by movement of the 5' end into the duplex, displacing the viral strand in the form of a single-stranded loop. Since unwinding will not occur in the absence of either gene A protein or rep protein, it is presumed that the rep protein interacts to form a complex with the bound gene A protein. Single-stranded DNA binding protein facilitates the unwinding by binding to the exposed single-stranded DNA. Further addition of the four deoxyribotriphosphates and DNA polymerase III holoenzyme to the reaction results in synthesis of viral (+) single-stranded circles in amounts exceeding that of the input template. A model describing the role of gene A protein and rep protein in duplex DNA replication is presented and other properties of gene A protein discussed.  相似文献   

14.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

15.
Replication of bacteriophage M13 replicative forms is inhibited by rifampicin, an antibiotic that specifically inhibits the Escherichia coli RNA polymerase, and by nalidixic acid, an inhibitor of phage and bacterial DNA replication. Synthesis of the M13 complementary strand during RF3 replication was at least tenfold more sensitive to inhibition by rifampicin and by nalidixic acid than was that of the viral strand. Since M13 complementary strand synthesis is relatively insensitive to chloramphenicol, an inhibitor of protein synthesis, its inhibition by rifampicin suggests that complementary strands are initiated during RF replication by an RNA priming mechanism similar to that involved in parental RF formation. The nalidixic acid-sensitivity of complementary strand synthesis during RF replication clearly distinguishes this process from the nalidixic acid-resistant formation of the parental complementary strand in the conversion of the infecting single strand to RF.Production of progeny viral strands is indirectly affected by rifampiein in two ways. It prevents the conversion of supercoiled RF (RFI) to the open form (RFII), an essential step both in RF replication and in single-strand synthesis. In addition, rifampiein interferes with the expression of gene 5, an M13 gene function required for the accumulation of progeny viral strands.  相似文献   

16.
DNA molecules with restricted binding of intercalating dyes are observed as replicative intermediates during the replication of bacteriophage M-13 duplex DNA in a cellular system in vitro prepared by plasmolysis of M-13-am5-infected Escherichia coli cells. Restriction of dye binding is abolished by heating the DNA to 80 degrees C, but can be recovered by slow cooling of the heat-treated DNA. Radioactive pulse-label incorporated by these molecules is found exclusively in elongated viral strands of more than one genome length. In the electron microscope this DNA fraction is seen to contain a significant number of duplex DNA rings with two single-stranded tails protruding from the same region of the ring. It is proposed that these structures arise by branch migration during the isolation of replicating molecules containing only one single-stranded tail. The topological constraint in these molecules is most likely caused by base-pairing between partially complementary regions of the two single-stranded tails.  相似文献   

17.
Rep protein as a helicase combines its actions with those of gene A protein and single-stranded DNA binding protein to separate the strands of phi X174 duplex DNA and thereby can generate and advance a replication fork (Scott, J. F., Eisenberg, S., Bertsch, L. L., and Kornberg, A. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 193-197). Tritium-labeled rep protein is bound in an active gene A protein. phi X174 closed circular duplex supercoiled DNA complex in a 1:1 ratio. Catalytic separation of the strands of the duplex by rep protein, as measured by incorporation of tritium-labeled single-stranded DNA binding protein, requires ATP at a Km value of 8 microM, and hydrolyzes two molecules of ATP for every base pair melted. When coupled to replication in the synthesis of single-strand viral circles, a "looped" rolling-circle intermediate is formed that can be isolated in an active form containing gene A protein, rep protein, single-stranded DNA binding protein, and DNA polymerase III holoenzyme. Unlike the binding of rep protein to single-stranded DNA, where its ATPase activity is distributive, binding to the replicating fork is not affected by ATP, further suggesting a processive action linked to gene A protein. Limited tryptic hydrolysis of rep protein abolishes its replicative activity without affecting significantly its binding of ATP and its ATPase action on single-stranded DNA. These results augment earlier findings by describing the larger role of rep proteins as a helicase, linked in a complex ith other proteins, at the replication fork of a duplex DNA.  相似文献   

18.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

19.
The A and A proteins of the bacteriophage G4 have been purified. The proteins have been analysed for their enzymatic activities on single-stranded and double-stranded DNA. The A protein introduces a single-stranded break at a specific place in the G4 replicative form I DNA. This cleavage site has been localized between nucleotides 506 and 507 in the viral (+) strand. The A protein binds covalently to the 5' end of the cleavage site. The A protein initiates the replication of the viral (+) DNA [Borrias, et al. (1979) Virology, 31, 288-298]; the cleavage site therefore identifies the origin of replication. The A protein cleaves viral (+) strand DNA at many different sites and also binds covalently to the 5' ends of the nick sites. The properties of both proteins strongly resemble the properties of the A and A proteins of the related and much butter analysed phage phi X174. These results indicate that the G4 and phi X174A and A proteins have comparable functions and also that both phages initiate the replicative form DNA in a similar way.  相似文献   

20.
Late in the life cycle of the single-stranded DNA phage phi X, the synthesis of positive strand DNA is coupled to the maturation of progeny virions. DNA synthesis and packaging take place in a replication-assembly complex, which we have purified to homogeneity and characterized. The following conclusions can be drawn: 1. The DNA component of the replication-assembly complex is a rolling circle with a single-stranded DNA tail which is less than or equal to genome length. 2. The major protein component of the replication-assembly complex is an intact viral capsid, as shown by gel analysis of 35S-labeled complexes. As replication proceeds at the DNA growing point, the positive strand tail of the rolling circle is displaced directly into the capsid. In addition to the capsid, the complex contains at least 1 molecule of the phi X gene A nicking protein, which appears to be covalently linked to the DNA. 3. The rolling circle . capsid complex can be purified to homogeneity by taking advantage of its uniform sedimentation velocity (35 S) and its uniform density upon equilibrium centrifugation in CsCl (1.50 g/cc). 4. The replication-assembly complex can be visualized in the electron microscope. An electron-dense particle, which has the dimensions of a viral capsid, is observed attached to a rolling circle at the DNA growing point. 5. Hybridization of specific phi X restriction fragments to the deproteinized, single-stranded tails of intact rolling circles has allowed the use of these replicating intermediates to determine both the origin/terminus and the direction of phi X positive strand DNA synthesis. The ends of the rolling circle tails map in the Hae III restriction Fragment Z6b, at the position on the phi X genome at which the gene A endonuclease is known to cut. This result indicates that this endonuclease participates in the "termination" of each round of synthesis by cutting off unit-length viral genomes. 6. Rolling circle . capsid complexes were also isolated from two other icosahedral, single-stranded DNA phages: G4 and St-1. The rolling circle . capsid complex seen in the case of the single-stranded DNA phages represents the first example of a structure in which DNA synthesis and viral assembly occur in a coupled manner. This tight coordination explains why double-stranded DNA circles are the net product of synthesis early in the viral life cycle while only single-stranded DNA circles are produced later. The single-stranded tails of the rolling circle intermediates are available for conversion to the duplex state at early times, whereas the concentration of preformed capsids later is high enough to bind to all of the replicating molecules and package the emerging positive strand DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号