首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sex steroid hormones influence insulin homeostasis and glucose metabolism, estradiol (E2) and progesterone (P4) induce changes in both fasting and postprandial insulinemia in rodents, however, insulin gene expression during estrous cycle is unknown. The aim of the present study was to determine an insulin gene expression pattern during the estrous cycle in the rat. Groups of 6 adult rats in each day of the estrous cycle were used. Serum P4, E2, testosterone (T) and insulin concentrations were determined by radioimmunoassay (RIA). A Northern blot analysis was performed to assess insulin gene expression in pancreatic tissue. We found a marked variation in insulin gene expression during the estrous cycle. The highest insulin expression was observed during the proestrus day. Interestingly, E2 and P4 but not T levels were correlated with changes in insulin mRNA content. The variations in serum insulin during the cycle were correlated with its mRNA content in pancreas. The overall results showed variations in serum insulin and insulin gene expression during estrous cycle of the rat that correlated with circulating E2 and P4 levels.  相似文献   

2.
The objective of this study was to determine in mice if a time-dependent pancreatic β-cell susceptibility to alloxan could be correlated to daily changes in blood glucose levels and to monitor the pattern of blood glucose at various times of day as mice became diabetic. Food was removed from mice standardized to a 12-h light:dark cycle (lights on at 0600 h CST, during the month of June) at 12 h before subcutaneous injection with 0.27 mg/g of alloxan. Six groups of 30 fasted mice were injected at 4-h intervals. Blood glucose levels were measured from each group immediately prior to injection, and at 2, 4, 8, 12, 24, 48, and 216 h after treatment. Animals receiving alloxan during the early- to middark period had an increase in blood glucose after 2 h, followed by a decline to hypoglycemic levels between 4 and 8 h, and recovery to hyperglycemic levels 48 h after alloxan exposure. Three and 30% of these animals were dead at 8 and 48 h, respectively. Mice treated during the midlight span had decreased blood glucose levels 2 h after alloxan treatment followed by an increase to diabetic hyperglycemia within 48 h. Twenty-three and 70% of the animals treated at 1430 h were dead at 8 and 48 h, respectively. At 216 h, total mortality was 45.6% and 81 of the 98 surviving mice were hyperglycemic. These data suggest a greater sensitivity to alloxan during the midlight resting period of the mice. This may be the result of increased sensitivity to the insulin released from the β cells when alloxan was given during the light span.  相似文献   

3.
目的:众多的流行病学研究和动物实验表明,晕动病存在明显的性别差异,特别是雌激素对晕动病易感性可能存在某些易化的调节作用,本研究为探讨“异食癖”模型上大鼠动情周期雌激素水平的变化对晕动病易感性的影响。方法:大鼠在不同的动情周期,给予足够的旋转刺激以后,通过摄取高岭土量的变化评价大鼠的晕动病反应,同时测定血浆雌激素(E2和P)水平,观察雌激素水平的变化对晕动病易感性的影响。结果:大鼠体内的雌性激素(E2和P)水平随着动情周期而发生波动,在动情期时,E2水平达到最高,而在动情前期则达到最低。P水平在动情间期和动情前期较高而在动情期与动情后期较低。足够的旋转刺激之后,大鼠的摄取高岭土量显著增加,并且呈现与大鼠动情周期雌激素水平波动的一致性,即动情期时摄取高岭土量最多。结论:大鼠动情周期雌激素水平的升高可能在一定程度上会加重大鼠的晕动病反应。可为进一步探讨雌激素水平与晕动病易感性之间的关系提供参考,从而也可能为发现晕动病新病因的研究打下基础,还可能为晕动病预防策略和措施启发新的应用价值。  相似文献   

4.
The influence of a 20% high-fat and a 4.5% control fat diet on circulating prolactin levels was determined during the estrous cycle of intact female rats, and during a progesterone-induced surge of prolactin in ovariectomized, estrogen-primed rats. An indwelling right atrial cannula was implanted into each rat to facilitate repeated blood sampling in conscious, undisturbed animals. No differences in serum prolactin levels were observed at any time during the estrous cycle or in the progesterone-induced surge of prolactin in rats fed either the high-fat or control fat diet. There also were no differences in the estrous cycles of rats on high- or low-fat diets. It is concluded that high dietary fat promotes mammary tumor development by a mechanism that does not involve alterations in circulating prolactin levels or of estrous cycles.  相似文献   

5.
6.
Cognitive function can be affected by the estrous cycle. However, the effect of the estrous cycle on synaptic functions is poorly understood. Here we show that in female rats, inhibitory-avoidance (IA) task (hippocampus-dependent contextual fear-learning task) drives GluA2-lacking Ca2+-permeable AMPA receptors (CP-AMPARs) into the hippocampal CA3-CA1 synapses during all periods of the estrous cycle except the proestrous period, when estrogen levels are high. In addition, IA task failed to drive CP-AMPARs into the CA3-CA1 synapses of ovariectomized rats only when estrogen was present. Thus, changes in the stoichiometry of AMPA receptors during learning depend on estrogen levels. Furthermore, the induction of long-term potentiation (LTP) after IA task was prevented during the proestrous period, while intact LTP is still expressed after IA task during other period of the estrous cycle. Consistent with this finding, rats conditioned by IA training failed to acquire hippocampus-dependent Y-maze task during the proestrous period. On the other hand, during other estrous period, rats were able to learn Y-maze task after IA conditioning. These results suggest that high estrogen levels prevent the IA learning-induced delivery of CP-AMPARs into hippocampal CA3-CA1 synapses and limit synaptic plasticity after IA task, thus preventing the acquisition of additional learning.  相似文献   

7.
The level of a tissue-specific inhibitor of mitotic activity (G2-chalone) and mitotic activity in the vaginal mucosa of cycling rats of varying age and castrated rats were studied. A direct correlation between the level of the inhibitor and mitotic index is found in cycling animals. Both parameters are maximal during estrus and minimal in proestrus, when estrogen level in blood circulation is the highest. The undulating variations in G2 inhibitor level during estrous cycle are less pronounced and the concentrations of the inhibitor in relevant phases are significantly lower in aged females than in adult rats. Administration of estradiol benzoate (1 microgram/100 g) to castrated female rats was followed by a significant decrease in mitotic inhibitor level in vaginal mucosa within 12 hrs. This, in turn, was followed by a rise in mitotic activity 18 hr after estrogen administration. Therefore, the estrogen exerts its effect on mitotic activity in target tissue after it has induced a decrease in the level of the antimitotic factor (G2-chalone).  相似文献   

8.
9.
The whole plant aqueous extract of E. littorale was tested for its hypoglycemic activity on normoglycemic, hyperglycemic and alloxan induced diabetic rats. Blood sugar lowering activity was not observed in normoglycemic and glucose loaded hyperglycemic rats in the short time experiment. But in case of diabetic rats, the fall of blood sugar after 30 days treatment with the aqueous extract was found to be significant (P < 0.001). The decrease in the plasma glucose level was accompanied with decrease in the level of glycosylated haemoglobin and glucose-6-phosphatase activity in liver. The potent anti-diabetic properties of E. littorale has been reported for the first time.  相似文献   

10.
Patterns of leptin secretion during the estrous cycle and the possible relationship of changes in circulating leptin during the periovulatory period with ovarian function in sows of obese (Iberian breed) and lean genotype (Large White×Landrace) were evaluated in two consecutive experiments. Plasma leptin concentrations throughout the estrous cycle in lean sows remain unchanged, but Iberian females showed a periovulatory increase in circulating leptin levels without associated changes in body condition and fatness. In these sows, plasma leptin concentrations at Days -1 and 0 of the cycle were found to be positively correlated with the ovulation rate (r=0.943 and r=0.987, respectively; P<0.05 for both), but the levels of leptin at Day 0 were negatively correlated with the progesterone release from Day 3 (r=-0.557; P<0.05) and, became more evident at Day 5 of the estrous cycle (r=-0.924; P<0.005). Such relationships were not observed in the females of the lean genotype. In conclusion, the present study indicates the existence of a distinctive pattern in the periovulatory leptin secretion in swine with obesity and leptin resistance, which is associated with the number and functionality of the corpora lutea present in the subsequent cycle.  相似文献   

11.
Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase. However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-beta-estradiol as a single injection (10 microg/kg s.c.) or chronically from timed-release pellets (0.1 microg/pellet for 3 weeks sustained release). Total (protein gene-product 9.5-immunoreactive) and sympathetic (dopamine beta-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation.  相似文献   

12.
There are changes in the nuclear content of the estrogen receptor in the rat uterus during the estrous cycle that are associated with changes in its physiology. The changes correlate with the concentrations of circulating estradiol. It appears that uterotrophic response to estradiol is a function of the nuclear receptor. The insertion of an IUD leads to changes in the treated uterine horn which appear to be the result of an increased responsitivity to circulating estradiol. The presence of an IUD did not alter the estrous cycle, gonadotropin, or corpus luteum function. The intracellular distribution of the estrogen receptor was investigated in normal uterine horns and in the horns with devices throughout the estrous cycle. Groups of 30 Wistar rats had a silk suture fitted in the lumen of 1 uterine horn. After 14 days the progress of these estrous cycles was determined. Rats were grouped according to the stage of the cycle on the 4th day. Rats were then killed and the uteri removed. Cytosol receptors were measured. The capacity of the cytosol estrogen receptor to bind to oligo(dT)-cellulose was determined. Cytosol protein, nuclear protein, and DNA were measured. At all stages of the estrous cycle, the wet weight and cytosol receptor of the treated horns were greater than the control horns. A slight increase in the capacity of cytosol receptor to bind to oligo(dT)-cellulose was noted at proestrus. The response elicited by the IUD was not considered to be due to an estrogenic response since the changes observed were not accompanied by a corresponding increase in the content of nuclear receptor.  相似文献   

13.
Background: Clinical studies have shown that fluctuation in the plasma concentrations of estrogen during the menstrual cycle has an effect on myocardial health in premenopausal women. When estrogen levels are low, the number of ischemic events experienced is increased.Objective: To determine whether the increased ischemic events reported with low plasma estrogen concentrations in women could be reproduced in an animal model, cardiac function was measured during hypoxia in the female rat at different time points of the estrous cycle.Methods: Hearts from female Sprague-Dawley rats were perfused in the working mode at the diestrous (low estrogen; n = 7) and proestrous (high estrogen; n = 6) phases of the estrous cycle, confirmed by plasma estradiol concentrations. Hearts were perfused under aerobic conditions with 5.5 mM glucose, 100 μU/mL insulin, and 1.2 mM palmitate, followed by a 30-minute period of hypoxia with 95% N2-5% CO2 gassing.Results: There were no significant differences in heart function between diestrous and proestrous groups prior to hypoxia. However, hypoxia induced perturbations in function that were dependent on the estrous cycle. Reductions in left ventricular systolic and diastolic pressure occurred with hypoxia, but no significant differences in these pressures were observed between groups. Left ventricular pulse pressure and coronary flow also decreased significantly during hypoxia (both, P < 0.05), but hearts from the proestrous group maintained a significantly higher pulse pressure (P < 0.05). Hearts from the proestrous group also maintained significantly higher rates of coronary flow during hypoxia (P < 0.05), compared with hearts from the diestrous group. However, despite the effect of proestrus, correlation coefficients between plasma estradiol concentrations and indices of cardiac function were not significant.Conclusions: Our findings indicate that the estrous cycle of the female rat affects cardiac function during hypoxia. This model may be useful to study the impact of the estrous cycle on metabolic and cardiovascular function.  相似文献   

14.
S H Kim  K W Cho  Y H Hwang  S H Oh  K H Seul  G Y Koh  S J Kim 《Life sciences》1992,51(16):1291-1299
The changes in ovarian levels of immunoreactive atrial natriuretic peptide (irANP) and arginine vasopressin (irAVP) were observed during the estrous cycle of rat. We also demonstrated the synthesis of ovarian ANP. In adult 4-day cycling rats, ovarian level of irANP was found to be the highest on proestrus and was to be the lowest on diestrus. Ovarian irANP level inversely correlated with ovarian level of irAVP. On reverse-phase HPLC, two distinct peaks of ovarian irANP, high and low molecular weight forms, existed in the each stage of the estrous cycle. However, no significant changes in plasma and atrial concentrations of ANP were observed during the cycle. The rat ovary contained mRNA coding for ANP. These data showing the synchronized cyclic change of ovarian irANP and irAVP with the estrous cycle suggest that the ovary locally synthesizes ANP and ovarian ANP may play regulatory roles on the follicular fluid dynamics.  相似文献   

15.
The relationships among pulsatile LH secretion pattern, estrogen secretion, and expression of the uterine estrogen receptor gene were examined throughout the estrous cycle in beagle bitches. In Experiment 1, blood samples were collected from 30 bitches every 10 min for 8 h from a cephalic vein during different phases of the estrous cycle. An increase in the mean plasma levels of LH occurred from mid to late anestrus (P < 0.01). The LH pulse frequency increased (P < 0.01) from late anestrus to proestrus, and was strongly correlated (r = 0.96, P < 0.001) with the mean plasma level of estradiol-17 beta (E2). In Experiment 2, middle uterine samples, including the myometrium and endometrium, from 18 bitches were taken at 6 stages of the estrous cycle. The total number of estrogen receptors and nuclear estrogen receptor and its mRNA levels in the uterus also increased (P < 0.01) from late anestrus to proestrus. Mean plasma E2 level and the number of uterine estrogen receptor were positively correlated (r = 0.81, P < 0.05). In Experiment 3, nine bitches were ovariectomized in mid anestrus. Two weeks later they received a single injection of 10 or 50 micrograms/kg, i.m., estradiol benzoate. The number of uterine estrogen receptor and their mRNA levels for ovariectomized bitches were low, but increased (P < 0.05) after treatment with a low dose of estradiol benzoate. These results suggest that increases in LH pulse frequency and estrogen secretion are associated with termination of anestrus and that subsequent enhancement of uterine estrogen receptor expression may be up-regulated by estradiol.  相似文献   

16.
Neurons of the medial preoptic area were studied in the brain of the female rat by means of ultrastructural immunocytochemistry using a monoclonal antibody generated against purified estrogen receptor (ER), in order to delineate the morphological correlates of estrogen feedback mechanisms. In addition to the preoptic area, the bed nucleus of the stria terminalis, the arcuate and ventromedial nuclei of the hypothalamus exhibited an intense labelling for estrogen receptor. At the light microscopic level, the cell nuclei were immunoreactive. No major alterations were detected in the ER expression of medial preoptic neurons sampled during the estrous cycle, but proestrous rats did exhibit a slightly increased intensity of staining. At the ultrastructural level, the ER immunoreactivity was primarily confined to the nuclei and associated with the chromatin. Long term steroid deprivation elicited by either ovariectomy or ovariectomy plus adrenalectomy resulted in a marked intensity of nuclear labelling. This pattern was not influenced by acute estradiol replacement. These morphological data indicate that neurons of the medial preoptic area have the capacity to detect estrogens via receptor mechanisms and that changes in the level of the circulating ligand are manifested in an alteration in the staining for the estrogen receptor. The study also supports the revised concept of estrogen receptor action by demonstrating the presence of receptors in the nuclei of the cells, whether or not they are occupied by their ligand.  相似文献   

17.
Oviducts from 22 crossbred heifers were examined for the presence of nuclear estrogen (ERalpha) and progesterone (PR) receptors at different phases (estrus, metaestrus and diestrus) of naturally occurring estrous cycles and estrous cycles during which superovulation was induced. Receptors were detected by immunohistochemistry in the epithelial cells, connective tissue and muscular layer of oviductal infundibulum, ampulla, ampullary/isthmic transition and isthmus. Epithelial ERalpha was found along the entire oviduct regardless of the cycle phase and of the circulating concentrations of 17beta-estradiol (E(2)) and progesterone (P(4)). Epithelial PR was found mainly at the ampullary-isthmic transition and isthmus and more intensely at the estrus phase but their amount was not correlated with P(4) concentrations. ERalpha in the connective tissue was more abundant at the infundibulum and ampulla, regardless of the phase of the estrous cycle and of E(2) and P(4) circulating concentrations. PR in the connective tissue was found mostly at the ampulla, regardless of the estrous cycle phase but no correlations were found between amount and P(4) concentrations. ERalpha staining intensity in the muscular layer was similar at all phases of the estrous cycle and at all anatomical segments of the oviducts. However, PR staining was more intense at the isthmus during the metaestrus phase and it was negatively correlated with P(4) concentrations. In general, data from the present research suggest that P(4) exerts an inhibitory role upon ERalpha and PR. Also, no differences were found between animals subjected or not to superovulation.  相似文献   

18.
19.
20.
Daily blood samples over a fifteen day period were obtained from two adult female black-tailed deer and circulating levels of progesterone, estrogens, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin were measured by radioimmunoassay. LH levels showed an apogee at the time when there was observed estrous behaviour. The length of the estrous cycle appeared to be 7 days. Progesterone levels peaked just subsequent to the LH peak. High estrogen levels coincided with high progesterone and prolactin levels. FSH reached maximum levels prior to peak estrogen levels. LH and FSH levels reached maxima on different days. There were two steroid peaks between the LH apogees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号