首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Massive apoptosis of pubertal male germ cells is important for the development of functional spermatogenesis in the adult testis. Although the trigger(s) for male germ cell loss at puberty remain undefined, we have hypothesized that transforming growth factor-betas (TGF-βs) play an active role. Here we demonstrate that the three mammalian TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3, induce distinct apoptosis of pubertal spermatogonia and spermatocytes in a dose-dependent manner. Induction of male germ cell death by activation of caspase-3 was most pronounced with TGF-β2 compared to TGF-β1 and TGF-β3. Furthermore, we found colocalization of activated caspase-3 with apoptotic protease-activating factor-1 (Apaf-1) in apoptotic germ cells, thus indicating the importance of the intrinsic mitochondrial pathway in TGF-β-induced apoptosis. The specificity of the TGF-β effects was proven by addition of recombinant latency-associated peptide against TGF-β1 (rLAP-TGF-β1) which completely abolished TGF-β1-induced and TGF-β3-induced germ cell apoptosis. Although TGF-β2-triggered germ cell death also was significantly reduced by rLAP-TGF-β1, inhibition was not maximal. Our results suggest that the three TGF-β isoforms induce apoptosis of pubertal male germ cells via the mitochondrial pathway in vitro and are thus likely candidates involved in the excessive first wave of apoptosis of male germ cells during puberty. Lutz Konrad and Marcel Munir Keilani contributed equally to this work.  相似文献   

2.
The aim of the present study was to evaluate the effect of hypophysectomy on cell proliferation in the left ovary and the left testis of 8- to 14-day-old chick embryos. Hypophysectomy was performed by the partial decapitation technique. At 44-46 h of incubation, chick embryo heads were sectioned at the mesencephalic level and the prosencephalic region removed. Embryos were further incubated until 8-14 days of development. Cell division was evaluated by bromodeoxyuridine (BrdU) incorporation and by counting the total number of somatic and germ cells in the gonads. The ovary displayed an exponential increase in the number of somatic and germ cells and a higher rate of BrdU incorporation compared to the testis. BrdU incorporation was reduced in the ovary of hypophysectomized embryos at 9-14 days of incubation, while in the testis, the reduction was significant at 14 days of development. Changes in the total number of somatic and germ cells further suggest that the absence of hypophysis affects the growth of the ovary earlier than the growth of the testis. Reduction in the number of somatic and germ cells after hypophysectomy in the ovary was reversed by a hypophyseal graft on the chorioallantoic membrane. The adenohypophysis regulates, probably through gonadotropic hormones, proliferation of somatic and germ cells in the gonads during chick embryo development.  相似文献   

3.
4.
5.
Transforming growth factor-β1 (TGF-β1) can activate mitogen-activated protein kinases (MAPKs) in many types of cells. The mechanism of this activation is not well elucidated. Here, we explore the role of TGF-β/Smads signaling compounds in TGF-β1-mediated activation of extracellular signal-regulated kinase (ERK) MAPK in human papillomavirus (HPV)-18 immortalized human bronchial epithelial cell line BEP2D and the role of TGF-β1-induced phosphorylation of ERK in proliferation and apoptosis of BEP2D. The cell models of siRNA-mediated silencing of TGF-β receptor type II (TβRII), Smad2, Smad3, Smad4, and Smad7 were employed in this study. Our results demonstrate that TGF-β1 activates ERK in a time-dependent manner with a maximum effect at 60 min; overexpression of Smad7 increased this TGF-β1-mediated phosphorylation of the ERK; and siRNA-mediated silencing of TβRII, Smad3, Smad4, and Smad7 abrogated this effect. Moreover, we observed that overexpression of Smad7 restored TGF-β1-mediated ERK phosphorylation in Smad4 knockdown cells but not in TβRII knockdown cells. In BEP2D cells, TGF-β1 treatment effectively inhibited cells’ proliferation and induced their apoptosis. Pretreatment with U0126, an inhibitor of ERK1/2, significantly enhanced the TGF-β1-mediated antiproliferative and apoptosis induction effects in BEP2D cells. These data revealed that TβRII and Smad7 play the critical roles in TGF-β1-mediated activation of ERK; Smad3 and Smad4 can play an indirect role through up-regulating Smad7 expression; and TGF-β1-induced phosphorylation of ERK may participate in BEP2D cell proliferation and apoptosis regulation.  相似文献   

6.
Conditioned medium from adipose derived stem cells (ADSC-CM) stimulates both collagen synthesis and migration of fibroblasts, and accelerates wound healing in vivo. Recently, the production and secretion of growth factors has been identified as an essential function of adipose-derived stem cells (ADSCs). However, the main soluble factor of ADSC-CM which mediates paracrine effects and its underlying mechanism has not been elucidated yet. In this study, we considered transforming growth factor-beta1 (TGF-β1) as a strong candidate for paracrine effect of ADSC-CM and investigated collagen synthesis and hyaluronic acid synthase (HAS) expression. After ADSC-CM addition, collagen type I, type III, HAS and hyaluronic acid (HA) expressions on human dermal fibroblasts (HDFs) were evaluated. Furthermore, to clarify effects of TGF-β1 as a paracrine mediator, TGF-β1 antibody and external supplementary TGF-β1 were treated to HDFs. Collagens type I, type III, HAS-1 and HAS-2 mRNA expressions of HDFs were greatly increased by ADSC-CM treatment, however there was no change in TGF-β1 antibody treated HDFs compared with non-treated control. These results strongly demonstrate that TGF-β1 plays an important role as a paracrine mediator of ECM synthesis. The fact that TGF-β1 contained in ADSC-CM not only accelerates collagen deposition but also increase hyaluronic acid synthesis of HDFs through HAS-1 and HAS-2 expression was also elucidated in this study. Therefore, ADSC-CM shows promise for the treatment of cutaneous wounds and accelerates granulation formation during healing process.  相似文献   

7.
TGFβ signalling in the development of ovarian function   总被引:1,自引:0,他引:1  
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-β (TGFβ) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-β. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.The author thanks the NHMRC of Australia for funding (Regkey 241000).  相似文献   

8.
9.
In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.  相似文献   

10.
The transforming growth factor (TGF)-β superfamily is a group of important growth factors involved in multiple processes such as differentiation, cell proliferation, apoptosis and cellular growth. In the Pacific oyster Crassostrea gigas, the oyster gonadal (og) TGF-β gene was recently characterized through genome-wide expression profiling of oyster lines selected to be resistant or susceptible to summer mortality. Og TGF-β appeared specifically expressed in the gonad to reach a maximum when gonads are fully mature, which singularly contrasts with the pleiotropic roles commonly ascribed to most TGF-β family members. The function of og TGF-β protein in oysters is unknown, and defining its role remains challenging. In this study, we develop a rapid bacterial production system to obtain recombinant og TGF-β protein, and we demonstrate that og TGF-β is processed by furin to a mature form of the protein. This mature form can be detected in vivo in the gonad. Functional inhibition of mature og TGF-β in the gonad was conducted by inactivation of the protein using injection of antibodies. We show that inhibition of og TGF-β function tends to reduce gonadic area. We conclude that mature og TGF-β probably functions as an activator of germ cells development in oyster.  相似文献   

11.
Liver fibrosis occurs in most types of chronic liver diseases and is characterized by excessive accumulation of extracellular matrix proteins, leading to disruption of tissue function and eventually organ failure. Transforming growth factor (TGF)-β represents an important pro-fibrogenic factor and aberrant TGF-β action has been implicated in many disease processes of the liver. Endoglin is a TGF-β co-receptor expressed mainly in endothelial cells that has been shown to differentially regulates TGF-β signal transduction by inhibiting ALK5-Smad2/3 signalling and augmenting ALK1-Smad1/5 signalling. Recent reports demonstrating upregulation of endoglin expression in pro-fibrogenic cell types such as scleroderma fibroblasts and hepatic stellate cells have led to studies exploring the potential involvement of this TGF-β co-receptor in organ fibrosis. A recent article by Meurer and colleagues now shows that endoglin expression is increased in transdifferentiating hepatic stellate cells in vitro and in two different models (carbon tetrachloride intoxication and bile duct ligation) of liver fibrosis in vivo. Moreover, they show that endoglin overexpression in hepatic stellate cells is associated with enhanced TGF-β-driven Smad1/5 phosphorylation and α-smooth muscle actin production without altering Smad2/3 signaling. These findings suggest that endoglin may play an important role in hepatic fibrosis by altering the balance of TGF-β signaling via the ALK1-Smad1/5 and ALK-Smad2/3 pathways and raise the possibility that targeting endoglin expression in transdifferentiating hepatic stellate cells may represent a novel therapeutic strategy for the treatment of liver fibrosis.  相似文献   

12.
Summary We have developed an in vitro system to examine the influence of adipocytes, a major mammary stromal cell type, on the growth of a murine mammary carcinoma, SP1. Previously, we have shown that 3T3-L1 adipocytes release a mitogenic factor, hepatocyte growth factor, which strongly stimulates proliferation of SP1 cells. We now show that 3T3-L1 pre-adipocytes secrete active inhibitory molecules which inhibit DNA synthesis in SP1 cells. In addition, latent inhibitory activity is present in conditioned media (CM) from both pre-adipocytes and adipocytes, and is activated following acid treatment. CM also inhibited DNA synthesis in Mv1Lu wild type epithelial cells, but not DR27 mutant epithelial cells which lack TGF-β type II receptor. Inhibitory activity of CMs was partially abrogated by neutralizing anti-TGF-β1 and anti-TGF-β2 antibodies, and was removed following ultrafiltration through membranes of 10 000 Mr but not 30 000 Mr pore size. These results show that the inhibitory effect on DNA synthesis is mediated by TGF-β1-like and TGF-β2-like molecules. In addition, acid-treated CM as well as purified TGF-β inhibited differentiation of pre-adipocytes. Untreated pre-adipocyte CM, but not mature adipocyte CM, spontaneously inhibited adipocyte differentiation. Together, these findings indicate that pre-adipocytes spontaneously activate their own secreted TGF-β, whereas mature adipocytes do not, and suggest that activation of TGF-β has a potent negative regulatory effect on adipocyte differentiation and tumor growth. Thus, TGF-β may be an important modulator of tumor growth and adipocyte differentiation via both paracrine and autocrine mechanisms. These findings emphasize the importance of adipocyte-tumor interactions in the regulation of tumor microenvironment.  相似文献   

13.
14.
The role that transforming growth factor β1 (TGF-β1) plays in influencing growth of glioma cells is somewhat controversial. To further understand the potential growth-regulatory effects of TGF-β1,we constructed an animal astroglial tumor model by injecting either wild-type or virally transduced human U-87 glioblastoma cells into nude rat brains. Wild type U-87 cells produced very low amounts of TGF-β1 and were highly tumorigenic. In contrast, U-87 cells transduced to express high levels of TGF-β1 showed reduced tumor size in vivo, in a dose-dependent manner. This reduction in tumor size was not due to either decreased vascularity or increased apoptosis. To test whether TGF-β1 overproduction inhibited tumor growth through an autocrine mechanism, the highest TGF-β1 producing cells were then double transduced with a vector expressing the kinase-truncated type II TGF-β receptor. Cells expressing high levels of truncated TGF-β receptor were less sensitive to TGF-β1 mediated growth inhibition in vitro and produced more aggressive tumors in vivo. The data suggest that the degree of tumorigenicity of the U-87 high-grade glioblastoma cell line may be associated with correspondingly low level of production of TGF-β1. These results also would tend to support the possibility that TGF-β1 may be useful in treating some high-grade gliomas.  相似文献   

15.
Mast cell-derived chymase is implicated in myocardial fibrosis (MF), but the underlying mechanism of intracellular signaling remains unclear. Transforming growth factor-β1 (TGF-β1) is identified as the most important profibrotic cytokine, and Smad proteins are essential, but not exclusive downstream components of TGF-β1 signaling. Moreover, novel evidence indicates that there is a cross talk between Smad and mitogen-activated protein kinase (MAPK) signaling cascade. We investigated whether chymase activated TGF-β1/Smad pathway and its potential role in MF by evaluating cardiac fibroblasts (CFs) proliferation and collagen synthesis in neonatal rats. MTT assay and 3H-Proline incorporation revealed that chymase induced CFs proliferation and collagen synthesis in a dose-dependent manner. RT-PCR and Western blot assay demonstrated that chymase not only increased TGF-β1 expression but also upregulated phosphorylated-Smad2/3 protein. Furthermore, pretreatment with TGF-β1 neutralizing antibody suppressed chymase-induced cell growth, collagen production, and Smad activation. In contrast, the blockade of angiotensin II receptor had no effects on chymase-induced production of TGF-β1 and profibrotic action. Additionally, the inhibition of MAPK signaling had no effect on Smad activation elicited by chymase. These results suggest that chymase can promote CFs proliferation and collagen synthesis via TGF-β1/Smad pathway rather than angiotensin II, which is implicated in the process of MF.  相似文献   

16.
Transforming growth factor (TGF-β) plays a pivotal role in angiogenesis. The purpose of this study was to explore the microRNA-mediated regulation of TGF-β receptor-II (TGFBR2) expression during rapid antler growth and proliferation of antler cells in sika deer. Deep sequencing–based expression analysis of miRNAs on the antler tip tissue was performed. Then, two bioinformatics software were used to analyze TGFBR2 3′-UTR sequence for predicting the matched and differentially expressed miRNAs in different tissues of the antler. The results indicated that miRNA-19a and miRNA-19b exhibited the highest upregulation among differentially expressed miRNAs. We also found that the TGFBR2 3′-UTR contains a binding site for miRNA-19a and miRNA-19b by transfection of wild-type and mutant dual-luciferase reporter vectors into antler cartilage cells. Meanwhile, overexpression of miRNA-19a and miRNA-19b significantly inhibited the proliferation of cartilage cells in vitro, and decreased the expression level of TGFBR2 protein. Furthermore, the expression levels of insulin-like growth factor 1 (IGF-1) and TGF-β2, which were associated with TGFBR2, reduced after transfection of cartilage cells with miRNA-19a and miRNA-19b. Our results indicate the significant roles of miRNA-19a and miRNA-19b in proliferation of antler cells and its potential application.  相似文献   

17.
Summary Transforming growth factor-beta (TGF-β), an ubiquitous regulatory peptide, has diverse effects on the differentiation and behavior of vascular smooth muscle cells (VSMC). However, the molecular mechanism through which TGF-α exerts its effects remains obscure. We investigated the phosphoinositide/protein kinase C [PKC] signaling pathway in the action of TGF-β on cultured embryonic avian VSMC of differing lineage: a) thoracic aorta, derived from the neural crest; and b) abdominal aorta, derived from mesenchyme. The second messenger responsible for activation of PKC is sn-1,2-diacylglycerol [DAG]; TGF-β increased the mass amounts of DAG in the membranes of neural crest-derived VSMC concurrent with translocation of PKC from the soluble to the membrane fraction, but TGF-β had no effect on the DAG or PKC of mesenchyme-derived VSMC. TGF-β potentiated the growth of platelet-derived growth factor (PDGF)-treated, neural crest-derived VSMC; but abolished PDGF-induced growth of mesenchymal cells. It is concluded that molecular and functional responses of VSMC to TGF-β are heterogeneous and are functions of the embryonic lineage of the VSMC.  相似文献   

18.
Effects of representative members of the transforming growth factor-β (TGF-β) family, TGF-β1, activin A and BMP-2, on melanin content and expression of pigment-producing enzymes were examined in B16 melanoma cells. Treatment with TGF-β1 or activin A but not with BMP-2 significantly decreased melanin content and expression of Tyrosinase and Tyrp-1, suggesting an inhibitory effect of TGF-β1 and activin A on melanin synthesis. TGF-β1 completely inhibited melanin synthesis induced by α-melanin stimulating hormone (α-MSH), whereas activin A only slightly did. As compared with parental B16 cells, the inhibitory effects of TGF-β1 and activin A on melanin content were relative smaller in B16 F10 cells, a subline of B16 cells that contain more pigment. The present study indicates that in addition to TGF-β, activin negatively regulates melanogenesis in the absence of α-MSH, but that the activity in the presence of α-MSH was slightly different between TGF-β and activin.  相似文献   

19.
Summary Transforming growth factor-β (TGF-β) and insulin-like growth factor (IGF-I) can attenuate drug-induced cell death in epithelial cells. Since milk whey contains a mixture of these and other growth factors, we evaluated mitogenic bovine whey extract (MBWE) for protective activity against chemotherapy drug damage in cultured epithelial cells (mink lung, Mu1.Lu). Etoposide and vinblastine reduced cell survival by up to 90%. This was attenuated by the addition of MBWE before and during drug exposure, but not following drug removal. MBWE was compared with individual growth factors known to be present in the mixture. IGF-I and platelet-derived growth factor were ineffective, whereas TGF-β2 induced growth inhibition and cell survival, with a maximum response at 3 ng/ml. TGF-β2 bioactivity was also demonstrated by showing that acidification of MBWE (A-MBWE), to activate TGF-β2, enhanced its growth inhibitory and chemoprotective activities 60- and 12-fold, respectively. However, MBWE contained additional protective factors. When TGF-β2 and the MBWE preparations were compared, on the basis of growth inhibition equivalents, MBWE protected cells against drug toxicity at concentrations an order of magnitude lower than with TGF-β2 or A-MBWE. Immunoneutralization of the TGF-β present in MBWE and A-MBWE eliminated all growth inhibitory activity but not all cell survival activity. We conclude that the MBWE preparations are cytoprotective against two chemotherapy drugs when added before and during drug exposure. TGF-β contributes to this activity, but the extracts contain other factors that promote the survival of epithelial cells after chemotherapy drug exposure.  相似文献   

20.
Summary Novel or modified serum-free media were developed for the anchorage-dependent growth of nontransformed murine mammary epithelial cells (MMEC) and Balb/MK murine keratinocytes respectively. Growth rates for both cell lines were similar in serum-containing and serum-free media. The serum-free media were used to evaluate potential mechanisms of epithelial cell growth regulation by type 1 transforming growth factor β(TGF-β1). The growth of MMEC and Balb/ MK cells was reversibly inhibited 40–65% in a time- and dose-dependent fashion by TGF-β1 under both serum-containing and serum-free conditions. Constitutive over-expression of a stranfected c-myc oncogene inMMEC did not result in loss of sensitivity to growth inhibition by TGF-β1. In addition, Balb/MK and MMEC growth inhibition by TGF-β1 was not potentiated by polynsaturated fatty acids or reversed by vitamin E. Expgenous type V collagen was able to mimic the inhibitory effects of TGF-β1 on the serum-free growth of Balb/MK and MMEC. In contrast, collagen type I and IV, fibronectin and laminin did not inhibit the growth of these cells. The type V collagen used was not contaminated with TGF-β, and subsaturating, but not saturating concentrations of type V collagen and TGF-β1 were additive with respect to Balb/MK and MMEC growth inhibition. These results demonstrate that nontransformed epithelial cell growth inhibition by TGF-β1 is mediated by mechanisms distinct from those observed with certain carcinoma and melanoma cells. Our results also suggest the possible involvement of type V collagen in Balb/MK and MMEC growth inhibition by TGF-β1. This work was supported, in part, by grant #R29 CA 44741 from the National Institutes of Health, Bethesda, MD to NTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号