首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli trigger factor (TF) and DnaK cooperate in the folding of newly synthesized proteins. The combined deletion of the TF-encoding tig gene and the dnaK gene causes protein aggregation and synthetic lethality at 30 degrees C. Here we show that the synthetic lethality of deltatigdeltadnaK52 cells is abrogated either by growth below 30 degrees C or by overproduction of GroEL/GroES. At 23 degrees C deltatigdeltadnaK52 cells were viable and showed only minor protein aggregation. Overproduction of GroEL/GroES, but not of other chaperones, restored growth of deltatigdeltadnaK52 cells at 30 degrees C and suppressed protein aggregation including proteins >/= 60 kDa, which normally require TF and DnaK for folding. GroEL/GroES thus influences the folding of proteins previously identified as DnaK/TF substrates.  相似文献   

2.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.  相似文献   

3.
4.
Over last two decades many researchers have demonstrated the mechanisms of how the Escherichia coli chaperonin GroEL and GroES work in the binding and folding of different aggregation prone substrate proteins both in vivo and in vitro. However, preliminary aspects, such as influence of co-expressing GroEL and GroES on the over expression of other recombinant proteins in E. coli cells and subsequent growth aspects, as well as the conditions for optimum production of recombinant proteins in presence of recombinant chaperones have not been properly investigated. In the present study we have demonstrated the temperature dependent growth characteristics of E. coli cells, which are over expressing recombinant aconitase and how the co-expression of E. coli chaperonin GroEL and GroES influence the growth rate of the cells and in vivo folding of recombinant aconitase. Presence of co-expressed GroEL reduces the aconitase over-expression drastically; however, exogenous GroEL & GroES together compensate this reduction. For the aconitase over-expressing cells the growth rate decreases by 30% at 25 degrees C when compared with the M15 E. coli cells, however, there is an increase of 20% at 37 degrees C indicating the participation of endogenous chaperonin in the folding of a fraction of over expressed aconitase. However, in presence of co-expressed GroEL and GroES the growth rate of aconitase producing cells was enhanced by 30% at 37 degrees C confirming the assistance of exogenous chaperone system for the folding of recombinant aconitase. Optimum in vivo folding of aconitase requires co-production of complete E. coli chaperonin machinery GroEL and GroES together.  相似文献   

5.
In Escherichia coli, the ribosome-associated chaperone Trigger Factor (TF) promotes the folding of newly synthesized cytosolic proteins. TF is composed of three domains: an N-terminal domain (N), which mediates ribosome binding; a central domain (P), which has peptidyl-prolyl cis/trans isomerase activity and is involved in substrate binding in vitro; and a C-terminal domain (C) with unknown function. We investigated the contributions of individual domains (N, P, and C) or domain combinations (NP, PC, and NC) to the chaperone activity of TF in vivo and in vitro. All fragments comprising the N domain (N, NP, NC) complemented the synthetic lethality of Deltatig DeltadnaK in cells lacking TF and DnaK, prevented protein aggregation in these cells, and cross-linked to nascent polypeptides in vitro. However, DeltatigDeltadnaK cells expressing the N domain alone grew more slowly and showed less viability than DeltatigDeltadnaK cells synthesizing either NP, NC, or full-length TF, indicating beneficial contributions of the P and C domains to TF's chaperone activity. In an in vitro system with purified components, none of the TF fragments assisted the refolding of denatured d-glyceraldehyde-3-phosphate dehydrogenase in a manner comparable to that of wild-type TF, suggesting that the observed chaperone activity of TF fragments in vivo is dependent on their localization at the ribosome. These results indicate that the N domain, in addition to its function to promote binding to the ribosome, has a chaperone activity per se and is sufficient to substitute for TF in vivo.  相似文献   

6.
7.
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.  相似文献   

8.
A large fraction of the newly translated polypeptides emerging from the ribosome require certain proteins, the so-called molecular chaperones, to assist in their folding. In Escherichia coli, three major chaperone systems are considered to contribute to the folding of newly synthesized cytosolic polypeptides. Trigger factor (TF), a ribosome-tethered chaperone, and DnaK are known to exhibit overlapping co-translational roles, whereas the cage-shaped GroEL, with the aid of the co-chaperonin, GroES, and ATP, is believed to be implicated in folding only after the polypeptides are released from the ribosome. However, the recent finding that GroEL-GroES overproduction permits the growth of E. coli cells lacking both TF and DnaK raised questions regarding the separate roles of these chaperones. Here, we report the puromycin-sensitive association of GroEL-GroES with translating ribosomes in vivo. Further experiments in vitro, using a reconstituted cell-free translation system, clearly demonstrate that GroEL associates with the translation complex and accomplishes proper folding by encapsulating the newly translated polypeptides in the central cavity formed by GroES. Therefore, we propose that GroEL is a versatile chaperone, which participates in the folding pathway co-translationally and also achieves correct folding post-translationally.  相似文献   

9.
We have characterized the heat-shock response of the nosocomial pathogen Enterococcus faecium. The growth of E. faecium cells was analyzed at different temperatures; little growth was observed at 50 degrees C, and no growth at 52 degrees C or 55 degrees C. In agreement, a marked decrease of general protein synthesis was observed at 52 degrees C, and very light synthesis was detected at 55 degrees C. The heat resistance of E. faecium cells was analyzed by measuring the survival at temperatures higher than 52 degrees C and, after 2 h of incubation, viable cells were still observed at 70 degrees C. By Western blot analysis, two heat-induced proteins were identified as GroEL (65 kDa) and DnaK (75 kDa). Only one isoform for either GroEL or DnaK was found. The gene expression of these heat-shock proteins was also analyzed by pulsed-labeled experiments. The heat-induced proteins showed an increased rate of synthesis during the first 5 min, reaching the highest level of induction after 10 min and returning to the steady-state level after 20 min of heat treatment.  相似文献   

10.
The GroEL/GroES chaperonin system mediates protein folding in the bacterial cytosol. Newly synthesized proteins reach GroEL via transfer from upstream chaperones such as DnaK/DnaJ (Hsp70). Here we employed single molecule and ensemble FRET to monitor the conformational transitions of a model substrate as it proceeds along this chaperone pathway. We find that DnaK/DnaJ stabilizes the protein in collapsed states that fold exceedingly slowly. Transfer to GroEL results in unfolding, with a fraction of molecules reaching locally highly expanded conformations. ATP-induced domain movements in GroEL cause transient further unfolding and rapid mobilization of protein segments with moderate hydrophobicity, allowing partial compaction on the GroEL surface. The more hydrophobic regions are released upon subsequent protein encapsulation in the central GroEL cavity by GroES, completing compaction and allowing rapid folding. Segmental chain release and compaction may be important in avoiding misfolding by proteins that fail to fold efficiently through spontaneous hydrophobic collapse.  相似文献   

11.
It has been shown that in Escherichia coli the chaperone DnaK is necessary for the late stages of 50S and 30S ribosomal subunit assembly in vivo. Here we focus on the roles of other HSPs (heat-shock proteins), including the chaperonin GroEL, in addition to DnaK, in ribosome biogenesis at high temperature. GroEL is shown to be required for the very late 45S-->50S step in the biogenesis of the large ribosome subunit, but not for 30S assembly. Interestingly, overproduction of GroES/GroEL can partially compensate for a lack of DnaK/DnaJ at 44 degrees C.  相似文献   

12.
Ellis RJ 《Current biology : CB》2005,15(17):R661-R663
A recent proteome analysis of protein folding inside cells of Escherichia coli predicts that only 84 of the approximately 2400 cytosolic proteins expressed in minimal media depend absolutely on the GroEL/GroES chaperone system to avoid aggregation. These proteins are enriched in alpha/beta domains and 13 are essential for growth.  相似文献   

13.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

14.
Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL–ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL–GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL–ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL–ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli.  相似文献   

15.
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.  相似文献   

16.
Intracellular de novo protein folding is assisted by cellular networks of molecular chaperones. In Escherichia coli, cooperation between the chaperones trigger factor (TF) and DnaK is central to this process. Accordingly, the simultaneous deletion of both chaperone-encoding genes leads to severe growth and protein folding defects. Herein, we took advantage of such defective phenotypes to further elucidate the interactions of chaperone networks in vivo. We show that disruption of the TF/DnaK chaperone pathway is efficiently rescued by overexpression of the redox-regulated chaperone Hsp33. Consistent with this observation, the deletion of hslO, the Hsp33 structural gene, is no longer tolerated in the absence of the TF/DnaK pathway. However, in contrast with other chaperones like GroEL or SecB, suppression by Hsp33 was not attributed to its potential overlapping general chaperone function(s). Instead, we show that overexpressed Hsp33 specifically binds to elongation factor-Tu (EF-Tu) and targets it for degradation by the protease Lon. This synergistic action of Hsp33 and Lon was responsible for the rescue of bacterial growth in the absence of TF and DnaK, by presumably restoring the coupling between translation and the downstream folding capacity of the cell. In support of this hypothesis, we show that overexpression of the stress-responsive toxin HipA, which inhibits EF-Tu, also rescues bacterial growth and protein folding in the absence of TF and DnaK. The relevance for such a convergence of networks of chaperones and proteases acting directly on EF-Tu to modulate the intracellular rate of protein synthesis in response to protein aggregation is discussed.  相似文献   

17.
Ribosome-associated Trigger Factor (TF) and the DnaK chaperone system assist the folding of newly synthesized proteins in Escherichia coli. Here, we show that DnaK and TF share a common substrate pool in vivo. In TF-deficient cells, deltatig, depleted for DnaK and DnaJ the amount of aggregated proteins increases with increasing temperature, amounting to 10% of total soluble protein (approximately 340 protein species) at 37 degrees C. A similar population of proteins aggregated in DnaK depleted tig+ cells, albeit to a much lower extent. Ninety-four aggregated proteins isolated from DnaK- and DnaJ-depleted deltatig cells were identified by mass spectrometry and found to include essential cytosolic proteins. Four potential in vivo substrates were screened for chaperone binding sites using peptide libraries. Although TF and DnaK recognize different binding motifs, 77% of TF binding peptides also associated with DnaK. In the case of the nascent polypeptides TF and DnaK competed for binding, however, with competitive advantage for TF. In vivo, the loss of TF is compensated by the induction of the heat shock response and thus enhanced levels of DnaK. In summary, our results demonstrate that the co-operation of the two mechanistically distinct chaperones in protein folding is based on their overlap in substrate specificities.  相似文献   

18.
Tyagi NK  Fenton WA  Deniz AA  Horwich AL 《FEBS letters》2011,585(12):1969-1972
Under "permissive" conditions at 25°C, the chaperonin substrate protein DM-MBP refolds 5-10 times more rapidly in the GroEL/GroES folding chamber than in free solution. This has been suggested to indicate that the chaperonin accelerates polypeptide folding by entropic effects of close confinement. Here, using native-purified DM-MBP, we show that the different rates of refolding are due to reversible aggregation of DM-MBP while folding free in solution, slowing its kinetics of renaturation: the protein exhibited concentration-dependent refolding in solution, with aggregation directly observed by dynamic light scattering. When refolded in chloride-free buffer, however, dynamic light scattering was eliminated, refolding became concentration-independent, and the rate of refolding became the same as that in GroEL/GroES. The GroEL/GroES chamber thus appears to function passively toward DM-MBP.  相似文献   

19.
The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.  相似文献   

20.
A set of 19 heat shock proteins (Hsp) was observed - by subtractive two-dimensional gel electrophoresis - to be induced when Bradyrhizobium japonicum, the nitrogen-fixing root-nodule symbiont of soybean, was temperature up-shifted from 28 degrees C to 43 degrees C. Up-regulated protein spots were excised from multiple two-dimensional gels. The proteins were concentrated using a funnel-gel device before being blotted onto poly(vinylidene difluoride) membranes for digestion with trypsin before MS and tandem MS analysis or for Edman sequence determination. Five proteins in the range 8-20 kDa were identified as the small Hsp (sHsp; HspB, C, D, E and H) and three others showed strong sequence similarity to the sHsp family. Two other low molecular mass proteins corresponded to GroES1 and GroES2, and five novel proteins were found. Four proteins of approximately 60 kDa were identified as GroEL2, GroEL4, and GroEL5 and DnaK. An analysis of the heat shock induction of DnaK, of four of the most strongly induced GroESL proteins and six of the sHsp revealed that the proteins could be placed into four distinct regulatory groups based on the kinetics of protein appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号