首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Genetic analyses of bird subspecies designated as conservation units can address whether they represent units with independent evolutionary histories and provide insights into the evolutionary processes that determine the degree to which they are genetically distinct. Here we use mitochondrial DNA control region sequence and six microsatellite DNA loci to examine phylogeographical structure and genetic differentiation among five North American grasshopper sparrow (Ammodramus savannarum) populations representing three subspecies, including a population of the endangered Florida subspecies (A. s. floridanus). This federally listed taxon is of particular interest because it differs phenotypically from other subspecies in plumage and behaviour and has also undergone a drastic decline in population size over the past century. Despite this designation, we observed no phylogeographical structure among populations in either marker: mtDNA haplotypes and microsatellite genotypes from floridanus samples did not form clades that were phylogenetically distinct from variants found in other subspecies. However, there was low but significant differentiation between Florida and all other populations combined in both mtDNA (FST = 0.069) and in one measure of microsatellite differentiation (theta = 0.016), while the non-Florida populations were not different from each other. Based on analyses of mtDNA variation using a coalescent-based model, the effective sizes of these populations are large (approximately 80,000 females) and they have only recently diverged from each other (< 26,000 ybp). These populations are probably far from genetic equilibrium and therefore the lack of phylogenetic distinctiveness of the floridanus subspecies and minimal genetic differentiation is due most probably to retained ancestral polymorphism. Finally, levels of variation in Florida were similar to other populations supporting the idea that the drastic reduction in population size which has occurred within the last 100 years has not yet had an impact on levels of variation in floridanus. We argue that despite the lack of phylogenetic distinctiveness of floridanus genotypes the observed genetic differentiation and previously documented phenotypic differences justify continued designation of this subspecies as a protected population segment.  相似文献   

2.
Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (~40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20?000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (?(ST) = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (F(ST) = 0.021) as well as within North America (F(ST) = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10(-4)). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides.  相似文献   

3.
Aim To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location Europe (mostly Italy). Methods We collected adult males from dung pats from 15 Italian localities over the period 2000–2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species.  相似文献   

4.
The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse.  相似文献   

5.
Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted.  相似文献   

6.
The evolutionary significance of spatial habitat gaps has been well recognized since Alfred Russel Wallace compared the faunas of Bali and Lombok. Gaps between islands influence population structuring of some species, and flightless birds are expected to show strong partitioning even where habitat gaps are narrow. We examined the population structure of the most numerous living flightless land bird in New Zealand, Weka (Gallirallus australis). We surveyed Weka and their feather lice in native and introduced populations using genetic data gathered from DNA sequences of mitochondrial genes and nuclear β‐fibrinogen and five microsatellite loci. We found low genetic diversity among extant Weka population samples. Two genetic clusters were evident in the mtDNA from Weka and their lice, but partitioning at nuclear loci was less abrupt. Many formerly recognized subspecies/species were not supported; instead, we infer one subspecies for each of the two main New Zealand islands. Although currently range restricted, North Island Weka have higher mtDNA diversity than the more wide‐ranging southern Weka. Mismatch and neutrality statistics indicate North Island Weka experienced rapid and recent population reduction, while South Island Weka display the signature of recent expansion. Similar haplotype data from a widespread flying relative of Weka and other New Zealand birds revealed instances of North Island—South Island partitioning associated with a narrow habitat gap (Cook Strait). However, contrasting patterns indicate priority effects and other ecological factors have a strong influence on spatial exchange at this scale.  相似文献   

7.
Extrinsic factors such as physical barriers play an important role in shaping population genetic structure. A reduction in gene flow leading to population structuring may ultimately lead to population divergence. These divergent populations are often considered subspecies. Because genetic differentiation may represent differences between subspecies, patterns of genetic structure should reflect subspecies groupings. In this study, we examine the contemporary population genetic structure of muskrat (n = 331) and assess the relevance of 4 geographically distinct subspecies designations across northern North America using 9 microsatellite loci. We predicted that patterns of gene flow and genetic structure would reflect the described subspecies. We found evidence of genetic differentiation between western and eastern regions, and muskrats from Newfoundland (NF) showed significantly lower genetic diversity than central regions. A strong isolation by distance pattern was also detected within the eastern cluster. Our results did not differentiate Ondatra zibethicus spatulus (northwest) from O. z. albus (central), but they suggest a distinction between O. z. obscurus (NF) and O. z. zibethicus (east). This study highlights the need for more phylogenetic studies in order to better understand intraspecific divergence and the genetic characterization of subspecies.  相似文献   

8.
Using independently segregating nuclear single nucleotide polymorphisms (SNPs) and mitochondrial control region sequences, we found an east–west division among sampled willow grouse Lagopus lagopus subspecies. This division cut across the range of the subspecies with the largest distribution (lagopus) and thus contradicted existing taxonomic classifications. Russian Lagopus lagopus lagopus tended to cluster with North American willow grouse partly classified as other subspecies. Scandinavian willow grouse (L. l. lagopus) clustered with red grouse from Britain and Ireland (Lagopus lagopus scoticus and Lagopus lagopus hibernicus) but substructuring confirmed the monophyly of the latter. In North America, we could not detect any major genetic divisions apart from two birds described as alexandrae from the Heceta Island (Alaska) when using mitochondrial sequences. Other samples from North America were intermingled regardless of whether they were described as muriei, alexandrae or lagopus. A specimen described as alexandrae was to some extent distinct when analysing the SNP data. The genetic analyses indicated some concordance between genetics and taxonomy but not complete congruence. This is particularly evident for mitochondrial DNA network analyses. We suggest that the taxonomy of this species would benefit by a careful re‐examination of the available evidence for subspecies. It appears as if subspecies status is a poor proxy for assigning evolutionary significant units and management units in this species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 77–90.  相似文献   

9.
Characterizing the current population structure of potentially invasive species provides a critical context for identifying source populations and for understanding why invasions are successful. Non‐native populations inevitably lose genetic diversity during initial colonization events, but subsequent admixture among independently introduced lineages may increase both genetic variation and adaptive potential. Here we characterize the population structure of the gypsy moth (Lymantria dispar Linnaeus), one of the world's most destructive forest pests. Native to Eurasia and recently introduced to North America, the current distribution of gypsy moth includes forests throughout the temperate region of the northern hemisphere. Analyses of microsatellite loci and mitochondrial DNA sequences for 1738 individuals identified four genetic clusters within L. dispar. Three of these clusters correspond to the three named subspecies; North American populations represent a distinct fourth cluster, presumably a consequence of the population bottleneck and allele frequency change that accompanied introduction. We find no evidence that admixture has been an important catalyst of the successful invasion and range expansion in North America. However, we do find evidence of ongoing hybridization between subspecies and increased genetic variation in gypsy moth populations from Eastern Asia, populations that now pose a threat of further human‐mediated introductions. Finally, we show that current patterns of variation can be explained in terms of climate and habitat changes during the Pleistocene, a time when temperate forests expanded and contracted. Deeply diverged matrilines in Europe imply that gypsy moths have been there for a long time and are not recent arrivals from Asia.  相似文献   

10.
Although the temperate regions of South America are known to have a diverse daphniid fauna, there has been no genetic evaluation of the existing taxonomic system or of the affinities between the North and South American faunas. The present study analyses mitochondrial DNA sequences and allozyme variation to investigate species diversity in 176 Daphnia populations from Argentina. This work established the presence of at least 15 species in Argentina, six of which are either undescribed or are currently misidentified and two of which represent range extensions of North American taxa. Eleven of the Argentine species appear endemic to South America, while the remaining four also occur in North America. In the latter cases, the close genetic similarity between populations from North and South America indicates the recent exchange of propagules between the continents. While biological interactions and habitat availability have undoubtedly contributed to the observed species distributions, chance dispersal has apparently played a dominant role in structuring large-scale biogeographical patterns in this genus and probably in other passively-dispersed organisms.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 171−205.  相似文献   

11.
We surveyed mitochondrial DNA (mtDNA) sequence variation in short-horned lizards (Phrynosoma douglasi) from throughout western North America and used these data to estimate an intraspecific phylogeny and to assess biogeographic scenarios underlying the geographic structure of lineages in this species. We sequenced 783 base pairs from 38 populations of P. douglasi and three putative outgroups (P. ditmarsi, P. orbiculare, P. platyrhinos). We detected high levels of nucleotide variation among populations and a spatial distribution of mtDNA lineages compatible with major geographic regions. The phylogenetic hypotheses best supported by the data suggest that P. douglasi, as currently described, is paraphyletic with respect to P. ditmarsi. Populations of P. douglasi from the Pacific Northwest (ID, CA, OR, WA) form a monophyletic group that is sister to the subsequent radiation of P. ditmarsi and other P. douglasi clades. These results suggest that divergences within this widespread species are fairly old. We focused on the genetic structure of populations of P. douglasi from a geographic perspective and interpreted the intraspecific phylogeny in light of geologic and climatic changes in western North America during the last 20 million years. The generally high levels of genetic variation found in these population comparisons are in accord with high levels of morphological variation in this species group; however, only in the Pacific Northwest region is there spatial congruence between these phylogenetic results and subspecific ranges based on previous morphological studies. We compared the evolutionary units delineated in this study with previously described subspecies of P. douglasi and evaluated the support (from morphology and mtDNA) for each population lineage in the phylogeny and the implications for the taxonomy of this group.  相似文献   

12.

Background

Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed.

Principal Findings

We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted.

Conclusions

This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments.  相似文献   

13.
  1. Climate oscillations during the Pleistocene had profound effects on the evolutionary history of freshwater fishes now distributed across northern temperate regions. The extent of continental glaciation on the western side of the North Pacific, including areas of East Asia, was more limited as compared with regions of North America, Europe and high-latitude areas of the North Pacific. Therefore, the effects of climate oscillations might have influenced species in dissimilar ways depending on the species' distribution.
  2. We used mitochondrial DNA (mtDNA) and microsatellite DNA (msDNA) markers to clarify the evolutionary history of masu salmon Oncorhynchus masou subspecies-complex (family Salmonidae) distributed in historically non-glaciated regions in the western North Pacific.
  3. No marked regional or subspecies-specific mtDNA haplotype associations were recognised, except for O. masou subsp., a lacustrine form endemic to Lake Biwa, an ancient lake in central Honshu. The landlocked subspecies O. masou formosanus, with a disjunct distribution on Taiwan Island, exhibited no diagnostic population features differing from the other subspecies, in either mtDNA or msDNA markers. Mismatch distribution and Bayesian skyline plot analyses indicated relatively recent range expansion and rapid population growth for masu salmon during the last glacial period (c. 0.1–0.15 Ma).
  4. Contrary to the mtDNA genealogy, Bayesian clustering using msDNA showed two main genetic clusters, mainly northern populations of the subspecies O. m. masou and populations of the subspecies O. m. ishikawae in southern areas of the Japanese Archipelago. Notably, O. m. formosanus on Taiwan Island was included in the O. m. masou group, and O. masou subsp. was included in the O. m. ishikawae group.
  5. Our results suggest that the masu salmon subspecies-complex in historically non-glaciated regions of the Temperate Northern Pacific is characterised by weak population structuring and shallow genetic differentiation among the subspecies, except for O. masou subsp. owing to its long isolation in Lake Biwa. Incomplete lineage sorting and historical inter-subspecies hybridisation, possibly due to secondary contact, seem to be plausible explanations for discrepancies in the mitochondrial DNA genealogy and nuclear DNA genetic structure.
  相似文献   

14.
Aim The blue‐fronted amazon (Amazona aestiva) is a widely distributed Neotropical parrot with two recognized sub‐species, which are mainly characterized by the colour of the shoulder. We explored mitochondrial DNA variability to determine how demographic processes and historical climatic fluctuations may have contributed to phylogeographical pattern and morphological variation of A. aestiva, and how this information could be useful to understand the evolutionary relationship of this species and the Amazona ochrocephala complex and to determine management units for conservation purposes. Location Brazil and north‐eastern Argentina. Methods We analysed a fragment of COI gene of 78 A. aestiva and 27 A. ochrocephala. We computed a median‐joining network, and the population structure of A. aestiva populations was assessed using a hierarchical analysis of nucleotide diversity. The mismatch distribution, Fu's Fs‐test of neutrality and R2 test were used to detect past population expansion. Results All A. aestiva haplotypes and A. ochrocephala subspecies from north‐eastern and southern South America were recovered within the South American clade. Hierarchical analysis of nucleotide diversity of A. aestiva populations detected two geographical groups as obtained by median‐joining network. These two A. aestiva groups showed evidence of a recent population expansion. The time of populations splitting estimated corresponding to the Middle Pleistocene. Main conclusions The two A. aestiva genetic groups identified in our analyses agree with the morphological variation, corresponding to named subspecies. These two A. aestiva groups have undergone a recent population expansion, with low gene flow between them. The expansion of savannah areas may have contributed to the population expansion of these two groups. We concluded that introgression after isolated diversification may better explain haplotype sharing between A. aestiva and A. ochrocephala subspecies. We suggest that management and conservation strategies should consider these two A. aestiva groups (or subspecies) as different management units and should maintain viable populations of these two management units.  相似文献   

15.
Recent integration of ecological niche models in phylogeographic studies is improving our understanding of the processes structuring genetic variation across landscapes. Previous studies on the amphibian Bufotes boulengeri boulengeri uncovered a surprisingly weak intraspecific differentiation across the Maghreb region. We widely sampled this species from Morocco to Egypt and sequenced one nuclear and three mitochondrial (mtDNA) genes to determine the level of genetic variability across its geographic range. We evaluated these data with ecological niche modeling to reveal its evolutionary history in response to climate change during the Quaternary. Our results highlight some mtDNA phylogeographic structure within this species, with one haplogroup endemic to coastal Morocco, and one haplogroup widely distributed throughout North Africa. No or little genetic differentiation is observed between isolated populations from the Hoggar Mountains, the Sabha district and the islands of Kerkennah and Lampedusa, compared to others populations. This can be explained by the expansion of the distribution range of B. b. boulengeri during glacial periods. This might have facilitated the species’ dispersal and subsequent gene flow between most North African localities.  相似文献   

16.
An intraspecific phylogeny was established for the New Zealand short-tailed bat Mystacina tuberculata using a 2,878-bp sequence alignment from multiple mitochondrial genes (control region, ND2, 12S ribosomal RNA [rRNA], 16S rRNA, and tRNA). The inferred phylogeny comprises six lineages, with estimated divergences extending back between 0.93 and 0.68 million years to the middle Pleistocene. The lineages do not correspond to the existing subspecific taxonomy. Although multiple lineages occur sympatrically in many populations, the lineages are geographically structured. This structure has persisted despite repeated cycles of range expansion and contraction in response to climatic oscillations and catastrophic volcanic eruptions. The distribution of lineages among populations in central North Island indicates that a hybrid zone was formed by simultaneous colonization from single-lineage source populations inhabiting remote forest refugia. The observed pattern is not typical of microbats, which because of their high mobility generally exhibit low levels of genetic differentiation and geographic structure over continental ranges. Although lineages of M. tuberculata occur sympatrically in many populations, genetic distances between them are sufficiently large to suggest that they may be considered evolutionary significant units or taxonomic subspecies.  相似文献   

17.
Identifying the genetic structure of a species and the factors that drive it is an important first step in modern population management, in part because populations evolving from separate ancestral sources may possess potentially different characteristics. This is especially true for climate‐sensitive species such as pikas, where the delimitation of distinct genetic units and the characterization of population responses to contemporary and historical environmental pressures are of particular interest. We combined a restriction site‐associated DNA sequencing (RADSeq) data set containing 4156 single nucleotide polymorphisms with ecological niche models (ENMs) of present and past habitat suitability to characterize population composition and evaluate the effects of historical range shifts, contemporary climates and landscape factors on gene flow in Collared Pikas, which are found in Alaska and adjacent regions of northwestern Canada and are the lesser‐studied of North America's two pika species. The results suggest that contemporary environmental factors contribute little to current population connectivity. Instead, genetic diversity is strongly shaped by the presence of three ancestral lineages isolated during the Pleistocene (~148 and 52 kya). Based on ENMs and genetic data, populations originating from a northern refugium experienced longer‐term stability, whereas both southern lineages underwent population expansion – contradicting the southern stability and northern expansion patterns seen in many other taxa. Current populations are comparable with respect to generally low diversity within populations and little‐to‐no recent admixture. The predominance of divergent histories structuring populations implies that if we are to understand and manage pika populations, we must specifically assess and accurately account for the forces underlying genetic similarity.  相似文献   

18.
The genetic characteristics of introduced populations have a relevant impact on their ability to establish and spread. The American mink (Neovison vison), native to North America, is an important invasive species in the Iberian Peninsula. Here, we used mitochondrial DNA sequences data to investigate the genetic diversity and phylogeographic structure of invasive versus native populations of this species. We also evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they derived. Phylogenetic analysis revealed two major lineages in the native range, which indicated a clear separation between western and eastern populations. On the contrary, we found no evidence of genetic structure in the invasive range. This was probably the result of the diverse origins of the released specimens and the rapid expansion and encounters of the introduced populations. We detected spatial mixing of both North American lineages in several sampling localities of the north central area of the Iberian Peninsula, giving rise to high levels of genetic diversity in some areas compared to North American populations. This could potentially lead to higher fitness of these individuals and thus increase the population viability and invasiveness of this species. These results point to the need to better study the populations in which lineages mix and, if necessary, intensify control efforts in them.  相似文献   

19.
The Asian longhorned beetle, (Coleoptera, Cerambycidae, Anoplophora glabripennis (Motschulsky)), is endemic to China and Korea and an important invasive insect in North America and Europe. We analyzed mitochondrial DNA sequence data of invasive populations of A. glabripennis in North America and Europe, and microsatellite allele frequency data of beetles from North America. We show that populations in New York City and Long Island NY; New Jersey, Chicago, IL, and Toronto, Canada have limited genetic diversity compared to populations in China. In addition, the data suggest that separate introduction events were responsible for many of the populations in North America and for European populations in Austria, France, Germany and Italy. Populations on Long Island, NY are suspected to have been initiated by the transport of cut wood from New York City. A. glabripennis beetles found in Jersey City, NJ appear to be derived from an expansion of the New York City, NY population, whereas beetles found in Linden, NJ are an expansion from the Carteret, NJ population. Limited genetic diversity did not stop this invasive insect from establishing damaging populations in North America. Founders of introduced A. glabripennis populations in North America and Europe are likely derived from populations in China that are themselves invasive, rendering difficult the identification of source populations. Invasiveness in an insect’s natural range could be an important predictor of potential pest status of introduced populations.  相似文献   

20.
Patterns of genetic differentiation in the plains zebra ( Equus quagga ) were analysed using mitochondrial DNA control region variation and seven microsatellites. The six morphologically defined subspecies of plains zebra lacked the population genetic structure indicative of distinct evolutionary units. Both marker sets showed high levels of genetic variation and very low levels of differentiation. There was no geographical structuring of mitochondrial DNA haplotypes in the phylogenetic tree, and the plains zebra showed the lowest overall differentiation recorded in any African ungulate studied so far. Arid-adapted African ungulates have shown significant regional genetic structuring in support of the Pleistocene refuge theory. This was not the case in the zebra, and the data are discussed in relation to the impact of Pleistocene climate change on a nonbovid member of the savannah ungulate community. The only other species showing a similar absence of genetic structuring is the African buffalo ( Syncerus caffer ), but this taxon lacks the high levels of morphological variation present in the plains zebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号