首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
于基成  刘秋  邵阳  刘长建  闫建芳  齐小辉 《生态学报》2014,34(20):5896-5906
以大肠杆菌、金黄色葡萄球菌和尖孢镰刀枯萎病菌作为测试靶目标,采用9种分离培养基从大连海域13个不同采样点的海洋沉积物样品中分离到165株海洋链霉菌。从165株海洋放线菌中筛选到对金黄色葡萄球菌具有抑制活性的菌株85株,占总菌株数的51.5%;对大肠杆菌具有抑制活性的菌株27株,占总菌株数的16.4%;对尖孢镰刀枯萎病菌具有抑制活性的菌株仅有6株,占总菌株数的3.6%。因此,海洋链霉菌的活性更多地表现为对细菌的抗性,尤其对革兰氏阳性细菌具有更高的抑制活性。对其中具有抑制活性或形态独特的菌株进行了16S r DNA序列分析,并构建系统发育树,显示活性海洋链霉菌具有丰富的种类多样性和广谱抗菌活性。同种海洋链霉菌与土壤链霉菌活性比较结果也表明,海洋链霉菌多表现抗革兰氏阳性细菌活性。  相似文献   

2.
In this study, the effects of pH and temperature on active two Streptomyces sp. against F. subglutinans were investigated. Streptomyces sp. isolates C-11 and C-26 were grown in submerged cultures for determination of growth curve and preparation of crude extract for further biological characterisations. Activity reached maximum at 9 and 4?days in rotary cultures for isolates C-26 and C-11, respectively. The results effects of different pH and temperature showed that these isolates were tolerant to high temperatures and the most antagonistic effects on fungi are investigated in alkaline conditions.  相似文献   

3.
Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3” and 4” of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.  相似文献   

4.
Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.  相似文献   

5.
Bioactive natural metabolites, especially from the marine endophytic fungi, are largely unexplored. Endophytic fungi are being increasingly recognized as a group of organisms that produce novel metabolites of industrial importance. This study investigated the anticancer and antibacterial potential of the marine algal endophyte, Penicillium chrysogenum. The different organic solvent extracts of the endophytic fungi grown on different growth medium were analyzed for anticancer and antibacterial activities. The highest inhibitory activity was observed for the ethyl acetate (EA) extract of the culture filtrate grown in potato dextrose broth (PDB) for 21 days, against the tested human breast cancer cell (MCF-7) line. Similarly, the PDB-EA extract showed an appreciable activity against the human pathogens. The biochemical analysis of the Cha EA metabolites revealed terpenoids, steroids, phenolics and flavones. Gas Chromatography (GCMS) data revealed several bioactive compounds such as anthraquinone and cinnamic acid. The Cha EA extract induced membrane damage and thus, apoptosis in MCF-7cells. The secondary metabolites produced by these marine endophytic fungi have contributed to considerable anticancer and antimicrobial activities and hence, this study is an evidence of potential sources of antimicrobial and anticancer compounds from Penicillium chrysogenum.  相似文献   

6.
A total of 288 marine samples were collected from different locations of the Bay of Bengal starting from Pulicat lake to Kanyakumari, and 208 isolates of marine actinomycetes were isolated using starch casein agar medium. The growth pattern, mycelial coloration, production of exopolysaccharides and diffusible pigment and abundance of Streptomyces spp. were documented. Among marine actinomycetes, Streptomyces spp. were present in large proportion (88%). Among 208 marine actinomycetes, 111 isolates exhibited antimicrobial activity against human pathogens, and 151 showed antifungal activity against two plant pathogens. Among 208 isolates, 183, 157, 116, 72 and 68 isolates produced lipase, caseinase, gelatinase, cellulase and amylase, respectively. The results of diversity, antimicrobial activity and enzymes production have increased the scope of finding industrially important marine actinomycetes from the Bay of Bengal and these organisms could be vital sources for the discovery of industrially useful molecules/enzymes.  相似文献   

7.
The present work deals with isolation of Streptomyces associated with marine sponges and its bioactive potential. Streptomyces sp. were isolated from the marine sponges Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. From the initial screening, 94 cultures of Streptomyces were obtained and from these 58 cultures exhibited antagonism against bacteria, 36 strains against fungi and 27 strains exhibited broad spectrum activity against both. The submerged culture extracts of the 58 anti-bacterial isolates were analysed and of these 58 strains, 37 strains showed positive inhibition against Bacillus subtilis, 43 against Staphylococcus aureus, 10 against Vibrio cholerae and 10 against Escherichia coli. The antifungal activities of the 36 strains were also evaluated and 27 strains showed positive inhibition against Aspergillus niger, 23 against Saccharomyces cerevisiae and 16 against Candida albicans. The production of polyene substances from the active extracts was confirmed by UV spectral analysis by the absorbance peaks that ranged from 225 to 262 nm and the TLC (R f values) ranging from 0.40 to 0.78. The results indicate that Streptomyces strains isolated from marine sponges produce potential antibacterial, antifungal and broad spectrum antibiotic compounds.  相似文献   

8.
Endophytic actinomycetes from Azadirachta indica A. Juss. were screened and evaluated for their anti-microbial activity against an array of pathogenic fungi and bacteria. A total of 55 separate isolates were obtained from 20 plants, and 60% of these showed inhibitory activity against one or more pathogenic fungi and bacteria. Actinomycetes were most commonly recovered from roots (54.5% of all isolates), followed by stems (23.6%), and leaves (21.8%). The dominant genus was Streptomyces (49.09% of all isolates), while Streptosporangium (14.5%), Microbispora (10.9%), Streptoverticillium (5.5%), Sacchromonospora sp. (5.5%), and Nocardia (3.6%) were also recovered. Streptomyces isolates AzR 006, 011, and 031 (all from roots) had acute activity against Pseudomonas fluorescens, while AzR027, 032, and 051 (also all from roots) showed activity against Escherichia coli. Meanwhile, an isolate of Nocardia sp. from leaves (AzL025) showed antagonism against Bacillus subtilis. Overall, 32 of the 55 were found to have broad spectrum significant antimicrobial activity, while about 4% of them showed strong and acute inhibition to pathogenic fungi and bacteria. Isolates of Streptomyces AzR031, 008, and 047, Nocardia sp. AzL025, and Streptosporangium sp. AzR 021 and 048 are of particular interest because they showed significant antagonistic activity against root pathogens, including Pythium and Phytophthora sp. Thus, many of the isolates recovered from A. indica in this study may be used in developing potential bio-control agents against a range of pathogenic fungi and bacteria and in the production of novel natural antimicrobial compounds. These results not only further our understanding of plant–microbe interactions but also indicate that there is an untapped resource of endophytic microorganisms that could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

9.
Endophytic actinomycetes were isolated from Combretum latifolium Blume (Combretaceae),Western Ghats of Southern India and identified by its characteristic culture morphology and molecular analysis of 16S rRNA gene sequences. In this survey of endophytic actinomycetes, a total of 117 isolates representing 9 different genera of endophytic actinomycetes were obtained using four different isolation media and several of them seemed to be novel taxa. Streptomyces genera (35%) was the most frequently isolated strains, followed by Nocordiopsis (17%) and Micromonospora (13%). ISP-4 medium recovered more isolates (47%) when compared to rest of the media used. Preliminary antibacterial activity of the isolates was carried out by confrontation test. Ethyl acetate fraction of selected isolates in disc diffusion assay exhibited broad spectrum antimicrobial activity against test human pathogens. All Streptomyces spp. strains displayed significant antimicrobial activity against test pathogens. Strain CLA-66 and CLA-68 which are Nocordipsis spp. inhibited both bacterial and fungal pathogens where as other isolates inhibited atleast three test human pathogens in disc diffusion assay. Antimicrobial screening of endophytic actinomycetes from this host may represent a unique potential niche for antimicrobial compounds of industrial and pharmaceutical applications. This work is the first comprehensive report on incidence of potential endophytic actinomycetes inhabiting C. latifolium Blume.  相似文献   

10.
To investigate the correlation between fecal actinobacteria and host animals, Streptomyces was isolated from fresh faeces of healthy sheep and secondary metabolites were analyzed. The most frequently isolated strain S161 with antibiotic activity against bacteria and fungi were analyzed. The S161 showed the highest 99 % similarity to Streptomyces canus DSB17 based on the 16S rRNA gene sequence analysis. Metabolite analysis based on MS and NMR spectra showed that S161 produces nactins, cyclotetralactones derived from nonactic acid and homononactic acid as building units of ionophoretic character. Due to ionophores are antimicrobial compounds that are commonly fed to ruminant animals to improve feed efficiency, stable beneficial interactions between Streptomyces bacteria and vertebrates have been demonstrated.  相似文献   

11.
Owing to their potential applications,as well as their structural diversity,the discovery of novel secondary metabolites from insect-associated fungi has been of interest to researchers in recent years.The aim of this study was therefore to estimate the diversity of fungi associated with fungus-growing termites and bioprospecting these for potential secondary metabolites.In total,18 fungal species were isolated and described from the gut and comb of Macrotermes barneyi based on 18S ribosomal DNA gene sequence analysis.Antimicrobial activity assays were carried out on all the known fungi,and nine isolates were recorded as active against pathogenic fungi.Xylaria escharoidea,the best performing isolate,was grown at laboratory scale and 4,8-dihydroxy-3,4-dihydronaphthalen-l(2H)was isolated and characterized.The minimum inhibitory concentration of this isolated compound against tested pathogenic organisms was found to be 6.25 fig.In addition,molecular docking studies have revealed that 4,8-dihydroxy-3,4-dihydronaphthalen-l(2H)is a prominent antibacterial agent with a marked interaction with key residues on protein A(agrAc)that regulates the accessory gene.The findings of this study support the drug discovery of antimicrobial properties in insect-associated fungi,which may lead to novel secondary metabolites.  相似文献   

12.
Forty endophytic fungi isolated from ginseng plants were screened to identify metabolites that had antifungal activity against ginseng microbial pathogens. The metabolites from the fungi were extracted from the liquid culture filtrates using ethyl acetate and then evaluated in vitro for antimicrobial activity against ginseng pathogens (Alternaria panax, Botrytis cinerea, Colletotrichum panacicola, Cylindrocarpon destructans, Rhizoctonia solani, and Phytophthora cactorum). Six of the fungi (Colletotrichum pisi, Fusarium oxysporum, Fusarium solani, Phoma terrestris, unknown 1 and 2) showed effective antimicrobial activity against all or some of the ginseng pathogens, with the extract of P. terrestris showing the strongest antimicrobial activity. The extract also showed inhibitory activity against spore germination of the pathogens. Gas chromatography–mass spectrometry (GC–MS) analysis of P. terrestris extract revealed that forty-one compounds were present in metabolites containing mainly N-amino-3-hydroxy-6-methoxyphthalimide (32% of the total metabolites) and 5H-dibenz [B, F] azepine (7%). Treatment with P. terrestris extract also caused morphological changes and reduced expression of the genes involved in mycelial growth and virulence. Treatment also induced defense-related genes in detached Arabidopsis leaves that were inoculated with the pathogens. These results indicate the antimicrobial potential for use of metabolites extracted from the ginseng endophytic fungi as alternatives to chemicals for biocontrol.  相似文献   

13.
Psychrophilic microorganisms are cold-adapted organisms that have an optimum growth temperature below 15 °C, and often below 5 °C. Endophytic microorganisms live inside healthy plants and biosynthesize an array of secondary metabolites which confer major ecological benefits to their host. We provide information, for the first time, on an endophytic association between bioactive psychrophilic fungi and trees in Cupressaceae plant family living in temperate to cold, semi-arid habitats. We have recovered psychrophilic endophytic fungi (PEF) from healthy foliar tissues of Cupressus arizonica, Cupressus sempervirens and Thuja orientalis (Cupressaceae, Coniferales). In total, 23 such fungi were found out of 110 endophytic fungal isolates. They were identified as ascomycetous fungi, more specifically Phoma herbarum, Phoma sp. and Dothideomycetes spp., all from Dothideomycetes. The optimal growth temperature for all these 23 fungal isolates was 4 °C, and the PEF isolates were able to biosynthesize secondary metabolite at this temperature. Extracted metabolites from PEF showed significant antiproliferative/cytotoxic, antifungal and antibacterial effects against phytopathogenic fungi and bacteria. Of special interest was their antibacterial activity against the ice-nucleation active bacterium Pseudomonas syringae. Accordingly, we suggest that evergreen Cupressaceae plants may benefit from their psychrophilic endophytic fungi during cold stress. Whether such endosymbionts confer any ecological and evolutionary benefits to their host plants remains to be investigated in vivo.  相似文献   

14.
Irrigation ponds may act as a source of phytopathogenic species that might infest crops through the irrigation systems. Many studies have shown that submerged macrophytes can improve water clarity by out-competing phytoplankton by means of various mechanisms: favoured phytoplankton-grazing zooplankton, reduced nutrient and light availability, increased sinking losses and the release of allelopathically active substances. However, less information is available on the effects of submerged macrophytes on heterotrophic aquatic organisms such as pathogenic bacteria, fungi or oomycete species. This paper studies the effects of three submerged macrophytes—Chara fragilis, Potamogeton pectinatus and Najas marina—on the viability in water of propagules of two phytopathogenic isolates of the oomycetes Pythium aphanidermatum and Pythium ultimum. Moreover, we tested general antimicrobial properties (against bacteria and fungi in water) for these macrophytes. The results showed clear inhibitory effects of all three macrophytes on bacterial density in water and of C. fragilis on the viability of Pythium. Thus, preserving aquatic vegetation in irrigation ponds (i.e. charophytes), besides its purely environmental interest, may have important agronomic benefits owing to their role as biological control against some phytopathogenic agents.  相似文献   

15.
Twenty different streptomycete isolates were obtained from soils of southeast Serbia. Five isolates identified as Streptomyces hygroscopicus (SH100, SH101, SH102, SH103, and SH104) showed strong activity against Botrytis cinerea, a parasite found in domestic vines. These isolates were extensively studied for their in vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi, and also antiviral activity against Herpes simplex. The results indicated that the obtained isolates were highly active against Botrytis cinerea, Candida albicans, and Herpes simplex, with an inhibition zone at ≥31 mm. The structure of the bioactive components was determined using elemental analysis, as well as UV/VIS, FTIR, and TLC.  相似文献   

16.
Caves are oligotrophic, dark and less-explored environments and are considered as sources of promising microbial strains in biotechnology. Hampoeil Cave is located in massive dolomite with thin bedded limestone in northwestern of Iran. In an isolation and screening program, various samples from soil, water, floor, wall and ceiling of Hampoeil cave and its invertebrates were collected. Four various treatments and 10 different isolation media were used for the isolation of the actinobacteria. Screening of the isolates for antimicrobial activity against 10 bacteria and fungi, 5 hydrolytic enzymes production and resistance to 5 heavy metals have been performed. Among 33 various samples, 76 actinobacteria from various genera, including Streptomyces, Micromonospora, Micrococcus, Kocuria and Corynebacterium were isolated. Eighty percent of the strains had one of the studied hydrolytic enzyme activity. At least one type of antimicrobial activity was seen in 25.3% of the isolates. Resistance to one metal or more was seen in 26.32% of the isolates. The ratio of rare-actinobacteria in the oligotrophic samples to enriched samples is 20% more than Streptomyces. Percentage of strains with the highest activity in esterase, amylase, DNase, protease or lipase activity that were isolated from organic-rich environmental samples were 100, 100, 100, 82 and 82%, respectively. Also, 26.32% of the actinobacterial isolates resisted to heavy metals. It was concluded that Hampoeil cave is a good source in finding cave-living actinobacteria potent in producing hydrolytic enzymes and bioremediation.  相似文献   

17.
The diversity of sponge-associated fungi has been poorly investigated in remote geographical areas like Antarctica. In this study, 101 phenotypically different fungal isolates were obtained from 11 sponge samples collected in King George Island, Antarctica. The analysis of ITS sequences revealed that they belong to the phylum Ascomycota. Sixty-five isolates belong to the genera Geomyces, Penicillium, Epicoccum, Pseudeurotium, Thelebolus, Cladosporium, Aspergillus, Aureobasidium, Phoma, and Trichocladium but 36 isolates could not be identified at genus level. In order to estimate the potential of these isolates as producers of interesting bioactivities, antimicrobial, antitumoral and antioxidant activities of fungal culture extracts were assayed. Around 51 % of the extracts, mainly from the genus Geomyces and non identified relatives, showed antimicrobial activity against some of the bacteria tested. On the other hand, around 42 % of the extracts showed potent antitumoral activity, Geomyces sp. having the best performance. Finally, the potential of the isolated fungi as producers of antioxidant activity seems to be moderate. Our results suggest that fungi associated with Antarctic sponges, particularly Geomyces, would be valuable sources of antimicrobial and antitumoral compounds. To our knowledge, this is the first report describing the biodiversity and the metabolic potential of fungi associated with Antarctic marine sponges.  相似文献   

18.
《Journal of Asia》2014,17(3):543-547
Entomopathogenic fungal metabolites exhibit a wide variety of insecticidal, antimicrobial, anticancer, antioxidant, and antiviral activities, and they have been suggested as potential candidates for the development of new bioactive agents. The rapid and simple screening of entomopathogenic fungi with such bioactivities is important for investigating bioactive substances. The radical-scavenging and anticancer activities of 28 species and 20 genera of 342 isolates of entomopathogenic fungi were evaluated using only culture filtrates. As a result, 23 isolates of Metarhizium anisopliae var. anisopliae, 1 isolate of Pochonia sp., and 1 isolate of Aspergillus sp. showed high radical-scavenging activity. Additionally, anticancer activity in HCT116 human colon cancer cells was also confirmed for selected culture filtrates. This simple screening method of entomopathogenic fungi using culture filtrates may be useful for the rapid detection of related substances with pharmacological activity from a large number of fungal samples.  相似文献   

19.
This study was undertaken to characterize Streptomyces strains occurring in some soils of Tanzania as well as to evaluate their potential to synthesize antimicrobial compounds. Six main classes of isolates were observed according to the colour of aerial mycelium. These were gray, cream, blue, pink, red, and white. The gray colour class dominated. About 65% of the isolates produced soluble pigments of various colours while about 33% of the isolates did not produce any soluble pigments. Brown coloured soluble pigments dominated. About 57% of the isolates had spiral spore chains. Some Streptomyces isolates displayed strong (> 30 mm inhibition zone), moderate (20–30 mm), or weak (< 20 mm) antibiosis against the plant/animal pathogenic bacteria tested. Other isolates did not show any antibiosis against any of the test pathogens. The plant pathogens CMM IPO 542 (Clavibacter michiganensis ssp. michiganensis) and Xanthomonas vascatoria were inhibited by most of the Streptomyces isolates. Xanthomonas oryzae pv. oryzae and X. campestris were inhibited by the least number of the Streptomyces isolates. Most of the animal pathogens tested seemed to show resistance to the antibiotics produced by some of the Streptomyces isolates which had shown high activity against the plant pathogens. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84–92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics’ discovery and further increase the pool of fungi available for natural bioactive product screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号