首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acyl-CoA hydrolase, referred to as hBACH, was purified from human brain cytosol. The enzyme had a molecular mass of 100 kDa and 43-kDa subunits, and was highly active with long-chain acyl-CoAs, e.g. a maximal velocity of 295 micromol/min/mg and K(m) of 6.4 microM for palmitoyl-CoA. Acyl-CoAs with carbon chain lengths of C(8-18) were also good substrates. In human brain cytosol, 85% of palmitoyl-CoA hydrolase activity was titrated by an anti-BACH antibody, which accounted for over 75% of the enzyme activity found in the brain tissue. The cDNA isolated for hBACH, when expressed in Escherichia coli, directed the expression of palmitoyl-CoA hydrolase activity and a 44-kDa protein immunoreactive to the anti-BACH antibody, which in turn neutralized the hydrolase activity. The hBACH cDNA encoded a 338-amino acid sequence which was 95% identical to that of a rat homolog. The hBACH gene spanned about 130 kb and comprised 9 exons, and was mapped to 1p36.2 on the cytogenetic ideogram. These findings indicate that the long-chain acyl-CoA hydrolase present in the brain is well conserved between man and the rat, suggesting a conserved role for this enzyme in the mammalian brain, and enabling genetic studies on the functional analysis of acyl-CoA hydrolase.  相似文献   

2.
The activities of long-chain acyl-CoA hydrolase (palmitoyl-CoA hydrolase, EC 3.1.2.2) and long-chain acyl-L-carnitine hydrolase, EC 3.1.1.28) in brown adipose tissue from cold-exposed and control guinea pigs were studied. Mitochondria from cold-exposed animals hydrolysed 21 nmol of palmitoyl-CoA/min per mg of protein and 1.3 nmol of palmitoyl-L-carnitine/min per mg of protein, and the specific activities were respectively 2 and 5 times as high in cold-exposed as in control animals. The subcellular-localization studies showed that both the long-chain acyl-CoA hydrolase and long-chain acyl-L-carnitine hydrolase were localized in the mitochondria. A location also in the soluble fraction cannot be excluded. The long-chain acyl-CoA hydrolase activity was doubled when the mitochondria were disrupted; this indicates that the enzyme is localized in the matrix compartment.  相似文献   

3.
A long-chain acyl-CoA hydrolase from rat liver microsomes has been purified by solvent extraction and gel chromatography to homogeneity as judged by polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme was a monomer of molecular weight 59 000. In a sucrose gradient it sedimented at 4.3 S. The isoelectric point, pI was 6.9, and the Stokes radius was approx. 31 A. The enzyme hydrolyzed long-chain fatty acyl-CoA (C7--C18) with maximum activity for palmitoyl-CoA. Bovine serum albumin activation of the enzyme was related to the ratio acyl-CoA/bovine serum albumin, and at high ratios, acyl-CoA inhibited the enzyme activity. Disregarding the substrate inhibition, an apparent Km of 65 nmol/mg protein or 1-10(-7) M and a V of 750 nmol/mg protein per min were calculated. The enzyme was inhibited by p-hydroxymercuribenzoate and N-ethylmaleimide. Reactivation by means of dithiothreitol was not complete.  相似文献   

4.
Long-chain acyl-CoA hydrolase (EC 3.1.2.2.) has been partially purified from the 100,000 × g supernatant fraction of rat brain tissue. The purification procedure included chromatography on gel filtration media, DEAE-cellulose, CM-cellulose, and hydroxyapatite. The partially purified enzyme had a specific activity of 7.1 mol/min-mg, and when analyzed by polyacrylamide gel electrophoresis, revealed one major and three minor bands of protein in the presence of dodecyl sulfate and two major bands of protein in the absence of dodecyl sulfate. The enzyme had a molecular weight of 65,000 and showed no evidence of aggregated or dissociated forms. The highest catalytic activity was exhibited with palmitoyl-CoA and oleoyl-CoA as substrates. Lower activity was found with decanoyl-CoA as the substrate and little or no activity was found with acetyl-CoA, malonyl-CoA, butyryl-CoA, or acetoacetyl-CoA. The enzyme was inhibited by CoA, various metal ions, including Mn2+, Mg2+ and Ca2+, and by bovine serum albumin. Heating the enzyme produced a loss of activity which corresponded to a first-order kinetic process, the rate of which was independent of the choice of substrate used to measure enzyme activity. This finding supports the idea that the purification procedure yields a single species of long-chain acyl-CoA hydrolase.  相似文献   

5.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low M concentrations of octanoyl-CoA. However, even a large excess (500 M) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low M concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above effect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolismin vivo.Abbreviations ACBP acyl-CoA binding protein - BSA bovine serum albumin - CPT carnitine palmitoyltransferase - CPT0 malonyl-CoA sensitive CPT of the outer mitochondrial membrane - CPT malonyl-CoA insensitive CPT of the inner mitochondrial membrane - OG octylglucoside - OMV outer membrane vesicles - IMV inner membrane vesicles Affiliated to the Department of Experimental Medicine, University of Montreal  相似文献   

6.
R W Gross 《Biochemistry》1983,22(24):5641-5646
Rabbit myocardial cytosolic acyl coenzyme A (acyl-CoA) hydrolase activity was purified to near-homogeneity by ammonium sulfate precipitation and ion-exchange, gel filtration, chromatofocusing, and hydroxylapatite chromatographies. Kinetic analysis of the purified protein demonstrated a maximum velocity of 24 mumol/(mg . min) and an apparent Michaelis constant of 50 microM. Cytosolic acyl-CoA hydrolase and lysophospholipase activities cochromatographed in every fraction of every step. The purified protein was a single band (Mr 23 000) after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. These results suggest that cytosolic lysophospholipase and palmitoyl-CoA hydrolase activities are catalyzed by a single polypeptide with dual activities. Palmitoyl-CoA competitively inhibited lysophospholipase activity (Ki = 4 microM). Low concentrations (20 microM) of lysophosphatidylcholine or L-palmitoylcarnitine increased palmitoyl-CoA hydrolase activity at low palmitoyl-CoA concentrations but had little effect at high concentrations of palmitoyl-CoA. In contrast, high concentrations (100 microM) of lysophosphatidylcholine or L-palmitoylcarnitine inhibited palmitoyl-CoA hydrolase activity. The results suggest that interactions between endogenous cardiac amphiphiles and palmitoyl-CoA hydrolase contribute to the regulation of intracellular long-chain acyl-CoA concentrations and therefore potentially modulate fluxes of fatty acid through several biochemical pathways.  相似文献   

7.
1. The activities of acyl-CoA hydrolase, catalase, urate oxidase and peroxisomal palmitoyl-CoA oxidation as well as the protein content and the level of CoASH and long-chain acyl-CoA were measured in subcellular fractions of liver from rats fed diets containing phenobarbital (0.1% w/w) or clofibrate (0.3% w/w). 2. Whereas phenobarbital administration resulted in increased microsomal protein, the clofibrate-induced increase was almost entirely attributed to the mitochondrial fraction with minor contribution from the light mitochondrial fraction. 3. The specific activity of palmitoyl-CoA hydrolase in the microsomal fraction was only slightly affected while the mitochondrial enzyme was increased to a marked extent (3-4-fold) by clofibrate. 4. Phenobarbital administration mainly enhanced the microsomal palmitoyl-CoA hydrolase. 5. The increased long-chain acyl-CoA and CoASH level observed after clofibrate treatment was mainly associated with the mitochondrial, light mitochondrial and cytosolic fractions, while the slight increase in the levels of these compounds found after phenobarbital feeding was largely of microsomal origin. 6. The findings suggest that there is an intraperoxisomal CoASH and long-chain acyl-CoA pool. 7. The specific activity of palmitoyl-CoA hydrolase, catalase and peroxisomal palmitoyl-CoA oxidation was increased in the lipid-rich floating layer of the cytosol-fraction. 8. The changes distribution of the peroxisomal marker enzymes and microsomal palmitoyl-CoA hydrolase after treatment with hypolipidemic drugs may be related to the origin of peroxisomes.  相似文献   

8.
The activity of long-chain acyl-CoA hydrolase in rat liver was increased by the administration of peroxisome proliferators, such as ethyl p-chlorophenoxyisobutyrate, di(2-ethylhexyl)phthalate or acetylsalicylic acid. The induced activity was mainly confined in the soluble fluid after the subcellular fractionation. The enzyme was purified nearly to homogeneity from livers of rats treated with di(2-ethylhexyl)phthalate. The specific activity of the final preparation was 247 mumol palmitoyl-CoA hydrolyzed min-1 mg protein-1. The molecular weight of the native enzyme was estimated to be 150 000 by gel filtration and that of the subunits was 41 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The activity of the enzyme was not increased but inhibited by bovine serum albumin or Triton X-100. The molecular and catalytic properties of the enzyme suggest that the induced enzyme was different from mitochondrial and microsomal long-chain acyl-CoA hydrolyses in liver.  相似文献   

9.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

10.
A mitochondrial short chain acyl-CoA hydrolase, purified 1375-fold from rat brain, has a molecular weight of approximately 1.55 × 105, a pH optimum of 8.1, an ionic strength optimum for activity and stability of 100–300 mM, is product activated by acetate and inhibited by DL-lipoic acid (Ki ? 5 μM) and 0.1 M orthophosphate (>50%). Acetyl, propionyl, butyryl, succinyl, acetoacetyl, malonyl and octanoyl-CoA are substrates. The highest maximum velocity and product activation was observed with acetyl-CoA as substrate.  相似文献   

11.
H. Gerbling  B. Gerhardt 《Planta》1988,174(1):90-93
Carnitine-acyltransferase activity assayed with acetyl-CoA, octanoyl-CoA, or palmitoyl-CoA is associated with the mitochondrial but not with the peroxisomes of mung-bean hypocotyls. Using mitochondria as an enzyme source, a half-maximal reaction rate is obtained with a palmitoyl-CoA concentration approximately twice that required with acetyl-CoA. In the presence of a saturating acetyl-CoA concentration the carnitine-acyltransferase activity is not enhanced by palmitoyl-CoA as additional substrate. However, palmitoylcarnitine is formed in addition to acetylcarnitine, and the formation of acetylcarnitine is competitively inhibited by palmitoyl-CoA. It is concluded that the mitochondria of mung-bean hypocotyls possess a carnitine acyltransferase of broad substrate specificity with respect to the chainlength of the acyl-CoA and that the demonstration of a carnitine-palmitoyltransferase activity in plant mitochondria does not indicate the presence of a specific carnitine long-chain acyltransferase.  相似文献   

12.
The activities of antimycin A-insensitive palmitoyl-CoA oxidation and of palmitoyl-CoA oxidase in peroxisomes from chicken liver were similar to those of rat liver. Catalase and d-amino acid oxidase activities in peroxisomes from chicken liver were lower than those of rat liver and urate oxidase was not detected. Carnitine acetyltransferase and palmitoyltransferase levels in chicken liver were 18- and 2-fold higher, respectively, than those of rat liver. Peroxisomal palmitoyl-CoA oxidation of chicken liver was inhibited by cyanide, in contrast to that of rat liver, although it was insensitive to antimycin A. Subcellular distribution of this enzyme was similar to that of rat liver; i.e., it was located only in the peroxisomes. The fatty acyl-CoA oxidase had a higher affinity toward medium- to long-chain fatty acyl-CoAs (C8 to C16) than shorter-chain analogs. The fatty acyl-CoA dehydrogenase had a broad affinity toward fatty acyl-CoAs (C4 to C18). Carnitine acetyltransferase was distributed equally in both peroxisomes and mitochondria. Carnitine palmitoyltransferase was distributed in the proportion of 20 and 80% in peroxisomes and mitochondria, respectively.  相似文献   

13.
To gain insight into the mechanism by which long-chain acyl-CoA thioesters potentiate diacylglycerol-activated protein kinase C, the cofactor dependence of this activating effect was studied with purified rat brain enzyme and histone H1 as substrate. Using two different assay systems, palmitoyl-CoA was found to decrease greatly the amount of phosphatidylserine required to activate the kinase. No relative changes were observed in the dependence of the enzyme for other cofactors (diacylglycerol, ATP, and Ca2+) in the presence of palmitoyl-CoA. The potentiating effect of palmitoyl-CoA and the decrease in phosphatidylserine requirement of the kinase was also demonstrated using the 47-kDa protein of human platelets as substrate and platelet protein kinase C as source of enzyme. The acyl-CoA thioester of the carcinogenic peroxisome-proliferator ciprofibrate was also found to decrease the phosphatidylserine requirement of protein kinase C. The data suggest that acyl-CoAs may play a role in the regulation of protein kinase C activity.  相似文献   

14.
1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids.  相似文献   

15.
In the livers of fasted rats, the activity of mitochondrial palmitoyl-CoA hydrolase was increased whereas the microsomal palmitoyl-CoA hydrolase activity decreased. Refeeding with a high-carbohydrate diet (glucose), the corresponding enzyme activities were decreased while refeeding with a high-fat diet (sheep tallow) increased the enzyme activities over the control values. The increased content of long-chain acyl-CoA and free CoASH under fasting and fat-refeeding was mainly attributed to the mitochondrial fraction with the remainder in the light mitochondrial fraction which contains peroxisomes. The results suggest a correlation of the compartmentation of the palmitoyl-CoA hydrolase and the content and compartmentation of the CoA derivatives in the liver under different nutritional states. The peroxisomal palmitoyl-CoA oxidase activity was increased by fasting. Fat-refeeding increased the activity even more; 1.8-fold as compared to the fasting animals. On the other hand, the activities of other peroxisomal enzymes which are not directly involved in the fatty acid metabolism such as urate oxidase were decreased to approximately the same extent by fasting. Re-feeding with glucose and fat further decreased the corresponding enzyme activity, particularly seen in the glucose-refed group.  相似文献   

16.
Palmitoyl-CoA hydrolase (EC 3.1.2.2) and palmitoyl-L-carnitine hydrolase (EC 3.1.1.28) activities from rat liver were investigated. 1. Microsomal and mitochondrial-matrix palmitoyl-CoA hydrolase activities had similar pH and temperature optima, although the activities showed different temperature stability. They were inhibited by Pb2+ and Zn2+. The palmitoyl-CoA hydrolase activities in microsomal fraction and mitochondrial matrix were differently affected by the addition of Mg2+, Ca2+, Co2+, K+ and Na+ to the reaction mixture. ATP, ADP and NAD+ stimulated the microsomal activity and inhibited the mitochondrial-matrix enzyme. The activity of both the microsomal and mitochondrial-matrix hydrolase enzymes was specific for long-chain fatty acyl-CoA esters (C12-C18), with the highest activity for palmitoyl-CoA. The apparent Km for palmitoyl-CoA was 47 microM for the microsomal enzyme and 17 microM for the mitochondrial-matrix enzyme. 2. The palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase activities of microsomal fraction had similar pH optima and were stimulated by dithiothreitol, but were affected differently by the addition of Pb2+, Mg2+, Ca2+, Mn2+ and cysteine. The two enzymes had different temperature-sensitivities. 3. The data strongly suggest that palmitoyl-CoA hydrolase and palmitoyl-L-carnitine hydrolase are separate microsomal enzymes, and that the hydrolysis of palmitoyl-CoA in the microsomal fraction and mitochondria matrix was catalysed by two different enzymes.  相似文献   

17.
MLCTs, which are randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule, showed significantly higher acyl-CoA dehydrogenase activity when measured by using butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA as substrates than long-chain triacylglycerol one hour after a single administration to rats. These results suggest that not only medium-chain fatty acid oxidation, but also long-chain fatty acid oxidation were increased in the liver of rats administered with MLCT.  相似文献   

18.
Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition.  相似文献   

19.
Dihydrofolate reductase activity in fertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, was almost the same as in unfertilized eggs. Aminopterin inhibited the enzyme competitively with dihydrofolate (FH2). The apparent Km value for FH2 in the dihydrofolate reductase reaction was about 0.1 μM in the crude homogenate of both unfertilized and fertilized eggs. Dihydrofolate reductase in the eggs was also inhibited by palmitoyl-CoA. The inhibition was canceled by polyamines, especially by spermine, but putrescine failed to prevent the enzyme from the inhibition. The change in long-chain acyl-CoA and polyamine concentrations during fertilization are discussed as possible regulatory factors of the enzyme.  相似文献   

20.
MLCTs, which are randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule, showed significantly higher acyl-CoA dehydrogenase activity when measured by using butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA as substrates than long-chain triacylglycerol one hour after a single administration to rats. These results suggest that not only medium-chain fatty acid oxidation, but also long-chain fatty acid oxidation were increased in the liver of rats administered with MLCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号