首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cyclooxygenase (COX) inhibitors were regarded as anticarcinogenic agents for lung cancer at least partly via PGE2; but these were based on cytokin stimulation experiment on A549 cell. In order to clarify whether COX inhibitors directly inhibit A549 cell, three COX inhibitors, NS398 (selective COX-2 inhibitor), SC560 (selective COX-1 inhibitor), and acetyl salicylic acid (ASA, non-selective COX inhibitor), were studied. NS398, and ASA, can inhibit PGE2 generation via COX-2 inhibition. The viability of A549 cell was assayed by MTT. However, without cytokin stimulation, all the three inhibitors (NS398 0.2-20 microM; SC560 1.0-100 nM; ASA 0.01-1.0 mM) were not able to inhibit A549 cell proliferation, in the other way round, NS398 promoted cell growth. And arachidonic acid (AA) and lipopolysaccharide (LPS) did not disturb the property of its growth. These data suggested that without cytokin stimulation, COX and PGE2 may not be the kernel molecules involved in A549 cell proliferation, and COX inhibitors could not inhibit A549 cell growth directly.  相似文献   

3.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

4.
The involvement of cyclooxygenase-2 (COX-2)-derived products and superoxide anion in the effect of lipopolysaccharide in noradrenaline (NA)-induced contraction was investigated in small mesenteric arteries (SMA) from normotensive, Wistar Kyoto (WKY), and spontaneously hypertensive (SHR) rats. In WKY, lipopolysaccharide (10 microg/ml, 1 and 5 h) only inhibited the NA response (0.1-30 microM) in the presence of dexamethasone (1 microM), indomethacin (10 microM), the selective COX-2 inhibitor, NS 398 (10 microM), and the TXA(2)/PGH(2) receptor antagonist, SQ 29,548 (10 microM) but not of superoxide dismutase (SOD, 100 U/ml). In SHR, lipopolysaccharide inhibited the NA response by itself; this inhibition was potentiated by dexamethasone, indomethacin, NS 398, SQ 29,548 and SOD. The effect of lipopolysaccharide plus indomethacin, NS 398 or SQ 29,548 was higher in SMA from WKY than SHR only after 1 h lipopolysaccharide incubation. N(G)-nitro-L-arginine methyl ester (100 microM) and endothelium removal abolished the indomethacin-induced potentiatory effect of lipopolysaccharide in both strains. Endothelium removal also abolished the SOD potentiatory effect in SMA from SHR. Lipopolysaccharide increases COX-2 expression to a similar level in both strains and iNOS expression in a greater extent in SHR; these increases were reduced by dexamethasone. These results indicate: 1) lipopolysaccharide induces the endothelial production of contractile prostanoids from COX-2 in SMA, probably to compensate the increase in NO from iNOS; 2) the production of prostanoids in the presence of lipopolysaccharide seems to be greater in normotensive than hypertensive rats only after lipopolysaccharide short incubation times; 3) endothelial production of O(2)(.-) contributes to counteract depression of NA contraction caused by lipopolysaccharide only in SHR.  相似文献   

5.
The contribution of cycloxygenase (COX)-1 and COX-2 in antigen-induced release of mediators and ensuing bronchoconstriction was investigated in the isolated perfused guinea pig lung (IPL). Antigen challenge with ovalbumin (OVA) of lungs from actively sensitised animals induced release of thromboxane (TX)A(2), prostaglandin (PG)D(2), PGF(2)(alpha), PGI(2) and PGE(2), measured in the lung effluent as immunoreactive TXB(2), PGD(2)-MOX, PGF(2)(alpha), 6-keto PGF(1)(alpha) and PGE(2), respectively. This release was abolished by the non-selective COX inhibitor flurbiprofen (10 microM). In contrast, neither the selective COX-1 inhibitor FR122047 nor the selective COX-2 inhibitor celecoxib (10 microM each) significantly inhibited the OVA-induced bronchoconstriction or release of COX products, except for PGD(2). Another non-selective COX inhibitor, diclofenac (10 microM) also significantly inhibited antigen-induced bronchoconstriction. The data suggest that both COX isoenzymes, COX-1 and COX-2 contribute to the immediate antigen-induced generation of prostanoids in IPL and that the COX-1 and COX-2 activities are not associated with different profiles of prostanoid end products.  相似文献   

6.
Recent observations show a positive correlation between the expression of cyclooxygenase (COX), especially COX-2), and cancer development. Here we tested the hypothesis that expression of COX-2 could influence apoptosis in lung cancer cell lines. To address this question, we determined the effects of camptothecin-induced apoptosis on three lung cancer cell lines which over express COX-1 (CORL23), COX-2 (MOR-P) and neither isoform (H-460), and determine if these effects were prostaglandin mediated. We also compared the effects of non-selective and isoenzyme selective COX-2 inhibitors on camptothecin-induced apoptosis in these three cell lines. Camptothecin induced apoptosis in all three cell lines independently of COX-1 or COX-2 expression. Indomethacin, a non-selective COX inhibitor and NS398, a selective COX-2 inhibitor had no effect on camptothecin-induced apoptosis at concentrations that abolished prostaglandin production. In conclusion, these finding suggest that the COX pathway is not involved in camptothecin-induced apoptosis of non-small cell lung cancer cell lines.  相似文献   

7.
As adjuvant during sensitization may cause unspecific immune reactions, the aim of the present study was to define the role of cyclooxygenase (COX) activity on airway inflammation and airway hyperresponsiveness (AHR) in an adjuvant-free allergic mouse model.Administration of diclofenac and indomethacin (non-selective COX inhibitors), FR122047 (COX-1 inhibitor) and lumiracoxib (selective COX-2 inhibitor) enhanced AHR. Only diclofenac and lumiracoxib reduced the inflammatory cell content of bronchoalveolar lavage (BAL). Moreover, levels of prostaglandins in BAL were reduced by indomethacin and FR122047 but were unaffected by lumiracoxib. However, compared with antigen controls, none of the COX inhibitors displayed major effects on the production of cytokines, smooth muscle mass, number of goblet cells and eosinophils, or collagen deposition in the airways.These data in mice sensitized without adjuvant support the fact that COX products have a general bronchoprotective role in allergic airway inflammation. Furthermore, the data suggest that COX-1 activity predominantly generates prostanoids in BAL, whereas COX-2 activity is associated with the accumulation of inflammatory cells in BAL. This study further supports that AHR on the one hand, and the inflammatory response and generation of prostanoids on the other, are dissociated and, at least in part, uncoupled events.  相似文献   

8.
This work aimed to functionally characterize the mechanisms underlying the relaxation induced by bradykinin (BK) in the rat carotid artery. Vascular reactivity experiments, using standard muscle bath procedures, showed that BK (0.1 nmol/L-3 mumol/L) induced relaxation of phenylephrine-pre-contracted rings in a concentration-dependent manner. Endothelial removal strongly attenuated BK-induced relaxation. HOE-140, the selective antagonist of bradykinin B(2) receptors concentration-dependently reduced the relaxation induced by BK. Pre-incubation of endothelium-intact rings with L-NAME (100 micromol/L), a non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (100 micromol/L), a selective inhibitor of the eNOS or 7-nitroindazole (100 micromol/L), the selective inhibitor of nNOS, reduced BK-induced relaxation. Conversely, 1400 W (10 nmol/L), a selective inhibitor of iNOS, did not alter the relaxation induced by BK. Surprisingly, indomethacin (10 micromol/L) a non-selective inhibitor of cyclooxygenase (COX) increased BK-induced relaxation in endothelium-intact but not denuded rings. Neither SQ29548 (3 micromol/L), a competitive antagonist of PGH(2)/TXA(2) receptors nor AH6809 (10 micromol/L), an antagonist of PGF(2alpha) receptors significantly altered the relaxation induced by BK in endothelium-intact rings. The combination of SQ29548 and AH6809 increased BK-induced relaxation. The present study shows that the vasorelaxant action displayed by BK in the rat carotid is mediated by endothelial B(2) receptors and the activation of the NO pathway. The major finding of this work is that it demonstrated functionally that endothelial-derived vasoconstrictor prostanoids (probably PGH(2), TXA(2) and PGF(2alpha)) counteract the vasorelaxant action displayed by BK.  相似文献   

9.
Retrospective epidemiological studies have suggested that chronic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) provides some degree of protection from Alzheimer's disease (AD). Although most NSAIDs inhibit the activity of cyclooxygenase (COX), the rate-limiting enzyme in the production of prostanoids from arachidonic acid (AA), the precise mechanism through which NSAIDs act upon AD pathology remains to be elucidated. Classical NSAIDs like indomethacin inhibit both the constitutive COX-1 and the inducible COX-2 enzymes. In the present work, we characterize the protective effect of the indomethacin on the neurotoxicity elicited by amyloid-β protein (Aβ, fragments 25–35 and 1–42) alone or in combination with AA added exogenously as well as its effects on COX-2 expression. We also compared the neuroprotective effects of indomethacin with the selective COX-1, COX-2 and 5-LOX inhibitors, SC-560, NS-398 and NDGA, respectively. Our results show that indomethacin protected from Aβ and AA toxicity in naive and differentiated human neuroblastoma cells with more potency than SC-560 while, NS-398 only protected neurons from AA-mediated toxicity. Present results suggest that Aβ toxicity can be reversed more efficiently by the non-selective COX inhibitor indomethacin suggesting its role in modulating the signal transduction pathway involved in the mechanism of Aβ neurotoxicity.  相似文献   

10.
11.
Expression of constitutive and inducible cyclooxygenase (COX-1 and COX-2, respectively) and the role of prostanoids were investigated in the aorta and mesenteric vascular bed (MVB) from the portal vein-ligated rat (PVL) as a model of portal hypertension. Functional experiments were carried out in MVB from PVL and sham-operated rats in the absence or presence of the nonselective COX inhibitor indomethacin or the selective inhibitors of COX-1 (SC-560) or COX-2 (NS-398). Western blots of COX-1 and COX-2 proteins were evaluated in aorta and MVB, and PGI(2) production by enzyme immunoassay of 6-keto-PGF(1alpha) was evaluated in the aorta. In the presence of functional endothelium, decreased contraction to norepinephrine (NE) and increased vasodilatation to ACh were observed in MVB from PVL. Exposure of MVB to indomethacin, SC-560, or NS-398 reversed the hyporeactivity to NE and the increased endothelial vasodilatation to ACh in PVL, with NS-398 being more potent than the other two inhibitors. Upregulation of COX-1 and COX-2 expressions was detected in aorta and MVB from PVL portal hypertensive rats, and increased production of 6-keto-PGF(1alpha) was observed in aorta from portal hypertensive rats. These results suggest that generation of endothelial vasodilator prostanoids, from COX-1 and COX-2 isoforms, accounts for the increased mesenteric blood flow in portal hypertension.  相似文献   

12.
The review presents our results on the regulatory role of prostaglandins (PG) and nitric oxide (NO) in the activation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic, adrenergic and histaminergic systems and by neurohormones: corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) under basal conditions. The synthesis of endogenous PG or NO was inhibited by non-selective and selective cyclooxygenase (COX) antagonists and nitric oxide synthase (NOS) blockers given 15 min before the respective receptor agonist and HPA axis activity was assessed 1 h later by measuring plasma ACTH and serum corticosterone levels. The muscarinic agent - carbachol-induced HPA response was considerably supressed by piroxicam, a predominantly constitutive cyclooxygenase (COX-1) inhibitor and significantly diminished by indomethacin, a non-selective COX blocker, but was unaffected by compound NS-398, an inducible cyclooxygenase (COX-2) antagonist. A non-selective NOS antagonist L-NAME and neuronal NOS blocker L-NNA significantly intensified the carbachol-induced corticosterone secretion. The nicotine-induced increase in ACTH and corticosterone response was significantly supressed by piroxicam, and diminished by indomethacin, but was significantly augmented by L-NAME and L-NNA. The inhibition of PG synthesis by indomethacin totally abolished or reversed the increase of nicotine-induced hormone responses to both NOS blockers. The i.c.v. phenylephrine, an alpha(1)-adrenergic receptor agonist - evoked HPA response was significantly impaired by piroxicam and compound NS-398 and more potently reduced by L-NAME. The i.c.v. clonidine, an alpha(2)-adrenergic agonist - elicited HPA response was also considerably decreased by piroxicam, compound NS-398 and L-NAME. By contrast, the stimulatory effect of i.c.v. isoprenaline, a non-selective beta-adrenergic agonist, was not altered by either COX or NOS inhibitors. The i.c.v. histamine- and HTMT, a histamine H(1)-agonist-induced ACTH and corticosterone response were significantly diminished by piroxicam and indomethacin, respectively. Compound NS-398, did not markedly alter the HPA response to HTMT or amthamine, a histamine H(2) receptor agonist. Inhibition of endogenous NO synthesis by a neuronal NOS inhibitor 7-nitroindazole markedly enhanced the histamine-induced hormone secretion, abolished the HTMT-induced response and did not substantially alter the amthamine-evoked ACTH and corticosterone secretion. COX blockers did not significantly affect the CRH-induced HPA response and the inhibition of NO synthesis by L-NNA markedly intensified ACTH response. The vasopressin-stimulated increase in HPA response, was considerably reduced by the inhibition of PG synthesis by both COX antagonists while inhibition of NO synthesis by NOS blockers greatly enhanced this response. The involvement of PG and NO in the neurohormonal regulation of HPA activity depends mainly on greatly complex and tightly regulated mechanisms at the level of second messengers IP(3) and adenylyl cyclase systems.  相似文献   

13.
Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX) inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor), NS-398 (COX-2 inhibitor) or indomethacin (COX-1/2 inhibitor) for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.  相似文献   

14.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

15.
We studied the transplacental ductal constrictive effects of a selective cyclooxygenase (COX)-1 inhibitor (SC560), six selective COX-2 inhibitors including rofecoxib, and a non-selective COX inhibitor (indomethacin). Each drug was administered to the pregnant rats, and fetal ductus arteriosus (DA) was studied with a whole-body freezing method. The inner diameter ratio of the DA to the main pulmonary artery (DA/PA) was 1.02+/-0.03 (mean+/-S.E.M.) in controls. Every drug constricted the DA dose-dependently. In preterm rats on the 19th day of gestation, 10mg/kg of SC560, rofecoxib and indomethacin caused ductal constriction, with DA/PA reduced to 0.76+/-0.02, 0.80+/-0.03 and 0.75+/-0.02, respectively. In near-term on the 21st day, 10mg/kg of them caused ductal constriction, with DA/PA to 0.74+/-0.04, 0.26+/-0.02 and 0.33+/-0.05. In conclusion, both COX-1 and COX-2 selective inhibitors constrict fetal DA. They are not better alternatives for the fetus than non-selective COX inhibitors for tocolysis.  相似文献   

16.
Non-steroidal anti-inflammatory drugs (NSAIDs) and inhibitors of the cyclooxygenase (COX) pathways are currently recommended for the prevention and treatment of several inflammatory diseases, including neurodegenerative disorders. However non-selective blockade of COX was found to have pro-inflammatory properties, because they have the ability to alter the plasma glucocorticoid levels that play a critical role in the control of the innate immune response. The present study investigated the role of non-selective (ketorolac or indomethacin) or specific inhibitors of COX-1 (SC-560) and COX-2 (NS-398) in these effects. Mice challenged systemically with the endotoxin lipopolysaccharide (LPS) exhibited a robust hybridization signal for numerous inflammatory genes in vascular-associated cells of the brain and microglia across the cerebral tissue. Ketorolac, indomethacin and NS-398 significantly increased the ability of LPS to trigger such an innate immune response at time 3 h post challenge, whereas SC-560 failed to change gene expression in the brain of animals treated with the endotoxin. These data together with the crucial role of COX-2-derived prostaglandin E2 (PGE2) in the increase of glucocorticoids during systemic immune stimuli provide evidence that inhibition of this pathway results in an exacerbated early innate immune reaction. This may have a major impact on the use of these drugs in diseases where inflammation is believed to be a contributing and detrimental factor.  相似文献   

17.
We studied whether NS-398, a selective cyclo-oxygenase-2 (COX-2) enzyme inhibitor, and piroxicam, an inhibitor of COX-2 and the constitutively expressed COX-1, protect neurones against hypoxia/reoxygenation injury. Rat spinal cord cultures were exposed to hypoxia for 20 h followed by reoxygenation. Hypoxia/reoxygenation increased lactate dehydrogenase (LDH) release, which was inhibited by piroxicam (180-270 microM) and NS-398 (30 microM). Cell counts confirmed the neuroprotection. Western blotting revealed no COX-1 or COX-2 proteins even after hypoxia/reoxygenation. Production of prostaglandin E2 (PGE2), a marker of COX activity, was barely measurable and piroxicam and NS-398 had no effect on the negligible PGE2 production. Hypoxia/reoxygenation increased nuclear factor-kappa B (NF-kappaB) binding activity, which was inhibited by piroxicam but not by NS-398. AP-1 binding activity after hypoxia/reoxygenation was inhibited by piroxicam but strongly enhanced by NS-398. However, both COX inhibitors induced activation of extracellular signal-regulated kinase (ERK) in neurones and phosphorylation of heavy molecular weight neurofilaments, cytoskeletal substrates of ERK. It is concluded that piroxicam and NS-398 protect neurones against hypoxia/reperfusion. The protection is independent of COX activity and not solely explained by modulation of NF-kappaB and AP-1 binding activity. Instead, piroxicam and NS-398-induced phosphorylation through ERK pathway may contribute to the increased neuronal survival.  相似文献   

18.
Endothelin (ET) is one of the active endogenous substances regulating the functions of astrocytes. In the present study, we examined effects of ET on cyclooxygenase (COX) expression in cultured astrocytes. ET-3 (100 nM) caused transient increases in the expression of both COX2 mRNA and protein, but not those of COX1, in cultured astrocytes. ET-induced COX2 mRNA expression was suppressed by 5 microg/ml actinomycin D, 30 microM BAPTA/AM, inhibitors of protein kinase C (1-100 nM staurosporin and 100 microM H-7), 2 microM dexamethasone, and prolonged treatment with 100 nM phorbol 12-myristate 13-acetate. ET-3 stimulated production of prostaglandin (PG) E2 in cultured astrocytes. The effect of ET-3 on the PGE2 production was diminished by actinomycin D. Indomethacin and NS398, a selective COX2 inhibitor, comparably decreased both the basal and the ET-stimulated PGE2 production. Proliferation of cultured astrocytes was stimulated by 100 nM ET-3, and the increased proliferation was reduced by co-addition of 1 microM PGE2. Treatment with 1 microM PGE2 caused astrocytic morphological changes accompanied by disappearance of stress fibers, a prominent structure of organized cytoskeletal actin in cultured astrocytes. In the presence of 10 nM ET-3, PGE2 did not show an effect on astrocytic actin organization. The present study shows that ET is an inducer of astrocytic COX2 and suggests that ET-induced PGE2 production through COX2 may be involved in the regulation of astrocytic functions.  相似文献   

19.
We examined the possible role of cyclooxygenase (COX) in charybdotoxin (ChTX)-induced oscillatory contraction in guinea pig trachea. Involvement of prostaglandin E(2) (PGE(2)) in ChTX-induced oscillatory contraction was also investigated. ChTX (100 nM) induced oscillatory contraction in guinea pig trachea. The mean oscillatory frequency induced by ChTX was 10.7 +/- 0.8 counts/h. Maximum and minimum tensions within ChTX-induced oscillatory contractions were 68.4 +/- 1.8 and 14.3 +/- 1.7% compared with K(+) (72.7 mM) contractions. ChTX-induced oscillatory contraction was completely inhibited by indomethacin, a nonselective COX inhibitor. Valeryl salicylate, a selective COX-1 inhibitor, did not significantly inhibit this contraction, whereas N-(2-cyclohexyloxy-4-nitro-phenyl)-methanesulfonamide, a selective COX-2 inhibitor, abolished this contraction. Exogenously applied arachidonic acid enhanced ChTX-induced oscillatory contraction. SC-51322, a selective PGE receptor subtype EP(1) antagonist, significantly inhibited ChTX-induced oscillatory contraction. Exogenously applied PGE(2) induced only a slight phasic contraction in guinea pig trachea, but PGE(2) induced strong oscillatory contraction after pretreatment with indomethacin and ChTX. Moreover, ChTX time-dependently stimulated PGE(2) generation. These results suggest that ChTX specifically activates COX-2 and stimulates PGE(2) production and that ChTX-induced oscillatory contraction in guinea pig trachea is mediated by activation of EP(1) receptor.  相似文献   

20.
The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA). The results show that PGE2, thromboxane A2 (TxA2), and PGF(2alpha) cause a dose-dependent contraction of muscle strips and cells. However, only TxA2 and PGE2 (E prostanoid 1 receptor type) antagonists induced a dose-dependent decrease in tonic tension. A COX-1 inhibitor decreased partially the tonic contraction and TxB2 (TxA2 stable metabolite) levels; a COX-2 inhibitor lowered the tonic contraction partially and reduced PGE2 levels. Both inhibitors and the nonselective COX inhibitor indomethacin abolished the tonic contraction. Transfection of human GB muscle strips with COX-1 siRNA partially lowered the tonic contraction and reduced COX-1 protein expression and TxB2 levels; COX-2 siRNA also partially reduced the tonic contraction, the protein expression of COX-2, and PGE2. Stretching muscle strips by 1, 2, 3, and 4 g increased the active tension, TxB2, and PGE2 levels; a COX-1 inhibitor prevented the increase in tension and TxB2; and a COX-2 inhibitor inhibited the expected rise in tonic contraction and PGE2. Indomethacin blocked the rise in tension and TxB2 and PGE2 levels. We conclude that PGE2 generated by COX-2 and TxA2 generated by COX-1 contributes to the maintenance of GB tonic contraction and that variations in tonic contraction are associated with concomitant changes in PGE2 and TxA2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号