首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The resistance of methicillin-resistant staphylococci to phage 85 is due to the presence of a certain system restriction modification in microbial cells. The loss of the capacity for restricting phage DNA by the cell as the consequence of the loss of the mec determinant is not accompanied by the loss of its capacity for modifying phage DNA.  相似文献   

2.
3.
The Preservation of Bacteriophage by Drying   总被引:1,自引:0,他引:1  
SUMMARY: Two bacteriophages were stored a t room temperature after being dried and recoveries of them were compared with those from broth suspensions which were stored at 4°. The T, phage of Escherichia coli was recovered without loss from both broth and dried material after 30 months. Some loss of C phage of Bacillus meguteriurn occurred on drying but recoveries from the desiccates were much higher than from the broth suspensions after prolonged storage.  相似文献   

4.
Escherichia coli cells pre-loaded with 86Rb+ begin to lose 86Rb+ immediately after phage T5 addition. The loss proceeds with negative-exponential (first-order) kinetics for up to approximately 15 min after phage addition. The constant which characterizes the rate of loss increases with increasing numbers of infecting phage per cell. It is known that anaerobic, fermenting cells of E. coli show a two-step increase in 8-anilino-1-naphthalene sulfonate (ANS) fluorescence upon infection with bacteriophage T5; the first rise begins immediately upon phage addition, the second 6 min later. The onset of 86Rb+ release, therefore, is correlated with the first fluorescence rise with respect to timing and response to the multiplicity of infection.  相似文献   

5.
The effect of microwave irradiation on the survival of bacteriophage PL-1, which is specific for Lactobacillus casei, was studied using a commercial 2,450 MHz microwave oven. The phages were inactivated by microwave irradiation according to almost first-order reaction kinetics. The rate of phage inactivation was not affected by the difference in the continuous or intermittent irradiation, nor by the concentrations of phages used, but was affected by the volume of phage suspensions, which prevented the loss of generated heat. Microwave irradiation of phage suspensions produced a number of ghost phages with empty heads, but fragmentation of the tail was hardly noticed. The breakage of phage genome DNA was primarily caused by the heat generated by microwave irradiation, whereas the phage DNA was not affected by the same temperature achieved by heat from outside. Thus we concluded that the phage-inactivating effect of microwave irradiation was mainly attributed to a thermal microwave effect, which was much stronger than a simple thermal exposure.  相似文献   

6.
Studies on the Bacteriophage 2 Receptors of Pseudomonas aeruginosa   总被引:6,自引:1,他引:5       下载免费PDF全文
The lysogenization of Pseudomonas aeruginosa strain BI with phage 2 resulted in the loss of the capacity to adsorb the same phage. The absence of phage 2 receptors on the surface of the lysogenized strain BI(2)(8) was confirmed by the failure of purified slime polysaccharide (SPB) or lipopolysaccharide (LPS) to inactivate phage 2. SPB and LPS from a phage 2-resistant strain also failed to inactivate phage 2 in contrast to the phage inactivation exhibited by the SPB and LPS obtained from the wild-type strain BI. Chemically, quantitative differences were apparent when the SPB and LPS of strains BI(2)(8) and BI/2S(2) were compared with those of the wild-type strain BI. The most striking difference noted was the absence of amino sugars in the SPB of strain BI/2S(2). The SPB of strain BI(2)(8) also contained a lower percentage of amino sugars compared with the SPB of the wild-type strain BI.  相似文献   

7.
Actinomycin D caused the irreversible loss of PBS1 phage infectious centers and PBS1-mediated transductants. The loss of infectious centers occurred only within the first 4 min after the addition of phage to cells. Actinomycin did not inactivate free phage or inhibit phage adsorption. Electron micrographs indicated that phage adsorbed to cells in the presence of actinomycin ejected their deoxyribonucleic acid (DNA) normally. However, when cells were infected in the presence of actinomycin, 15 to 22% of their (32)P-labeled DNA appeared in the medium, whereas only 1.5 to 7.2% of the (32)P-labeled DNA appeared in the medium during normal infection. Neither 8-azaguanine nor chloramphenicol caused a similar loss of PBS1 infectious centers or transductants. Actinomycin also caused the loss of SP10 infectious centers but it had no effect on SP01 or phi29 infections. We conclude that actinomycin causes abortion of PBS1 infection by inhibiting the uptake or retention of phage DNA into host cells. The immunity of SP01 and phi29 infections to actinomycin probably reflects differences in the penetration mechanisms of these phages.  相似文献   

8.
The adsorption of Bacillus subtilis phage PBS1 was studied, and it was demonstrated that the primary adsorption site for this phage is the flagellum of B. subtilis. The capacity of flagella to function for motility may be lost without the loss of their capacity to adsorb the phage and permit infection. Deoxyribonucleic acid injection by the phage is inhibited by cyanide, suggesting the requirement for cellular energy in the infection process.  相似文献   

9.
The inactivation of bacteriophage HP1c1 by X rays in a complex medium was found to be exponential, with a D0 (the X-ray exposure necessary to reduce the survival of the phage to 37%) of approximately 90 kR. Analysis of results of sucrose sedimentation of DNA from X-irradiated whole phage showed that the D0 for intactness of single strands was about 105kR, and for intactness of double strands, it was much higher. The D0 for attachment of X-irradiated phage to the host was roughly estimated as about 1,100 kR. Loss of DNA from the phage occurred and was probably due to lysis of the phage by X irradiation, but the significance of the damage is not clear. The production of single-strand breaks approaches the rate of survival loss after X irradiation. However, single-strand breaks produced by UV irradiation, in the presence of H2O2, equivalent to 215 kR of X rays, showed no lethal effect on the phage. Although UV-sensitive mutants of the host cell, Haemophilus influenzae, have been shown to reactivate UV-irradiated phage less than does the wild-type host cell, X-irradiated phage survive equally well on the mutants as on the wild type, a fact suggesting that other repair systems are involved in X-ray repair.  相似文献   

10.
A phage-resistant mutant with a defect in a membrane component required for phage infections in Lactococcus lactis subsp. lactis C2 was transformed with a chromosomal library of the wild-type, phage-sensitive strain. Of the 4,200 transformants screened for phage sensitivity, three were positively identified as phage sensitive. A cause-and-effect relationship between the cloned chromosomal fragments and the phage-sensitive phenotype was established on the basis of the following two criteria: (i) the frequency of loss of the cloned fragments in the absence of antibiotic selection pressure correlated with the frequency of loss of phage sensitivity; and (ii) phage sensitivity was transferred to 100% of recipient, phage-resistant cells transformed with the cloned fragment. The cloned chromosomal DNA from the three independent isolates was physically mapped with restriction endonucleases. The sizes of the cloned fragments were 9.6, 11.8, and 9.5 kb. Each fragment contained an identical stretch of DNA common to all three, which was 9.4 kb. The gene that conferred phage sensitivity was localized by subcloning to a 4.5-kb region. Further subcloning indicated that a single EcoRI site within the 4.5-kb region must lie within the gene or its promoter. The required 4.5-kb region was sequenced and found to code for one partial and two complete open reading frames. The gene required for complementation was functionally mapped by Tn5 mutagenesis and localized to one of the two complete open reading frames, which was designated pip (an acronym for phage infection protein). pip is 2,703 bases in length. Potential promoters start 206 and 212 bases upstream of the open reading frame. A ribosome binding site and a seven-base spacer precede the GTG (Val) translation initiation codon. The amino acid sequence deduced from the gene has 901 residues and an M(r) of 99,426. Hydropathy analysis revealed four to six potential membrane-spanning regions, one near the amino terminus and the others at the extreme carboxyl terminus. The amino terminus has characteristics of a signal sequence. The putative protein would have a 650-residue, central polar domain.  相似文献   

11.
SUMMARY: Mass lysis of lactic streptococci infected with baeteriophage at 30° was prevented at pH 5·10. At lower pH values no multiplication of phage followed infection, and prolonged incubation at 30° resulted in loss of phage particles from unlysed samples. Adsorption of phage particles on host cells was unaffected by acidity, but no phage penetration of host cells took place. Host cell properties were apparently unchanged by adsorption of phage particles in acid whey.  相似文献   

12.
Smith GP  Fernández AM 《BioTechniques》2004,36(4):610-4, 616, 618
A small model peptide, the FLAG epitope, was cloned into two filamentous phage display vectors, f88-4 and fd88-4, creating phages f88-FLAG and fd88-FLAG, respectively. Both vectors have a gene VIII display cassette (in addition to their normal phage gene VIII) and display the cloned peptide on a few percent of the virion's 3000-4000 pVIII (major coat protein) subunits. Vector f88-4 has a replication defect and attains low DNA copy number in infected cells, while vector fd88-4 has no replication defect and attains the normal, high DNA copy number characteristic of wild-type filamentous phage. Almost no loss of displayed peptide was observed during six rounds of propagation of low copy number f88-FLAG phage. In contrast, when high copy number fd88-FLAG phage was similarly propagated, variant clones that did not display the FLAG epitope accumulated gradually. The loss of displayed peptide from the high copy number vector is undoubtedly slow enough to be overcome by even weak affinity selection, and high copy number vectors have important advantages that make their use worth considering, at least when the displayed peptides are small.  相似文献   

13.
Bacteriophage PBS 1 adsorbs initially on the flagella of its host, Bacillus subtilis (stage I). The phage can adsorb to both active and inactive flagella. Flagellar attachment is nonspecific as PBS 1 was shown to attach to the flagella of Bacillus species other than the normal host B. subtilis. The phage particle then quickly moves down the length of the flagellum to its base, the final adsorption site. Flagellar motion is required for flagellar base attachment (stage II). After proper attachment at the flagellar base, the phage tail sheath contracts sending the tail core through the final adsorption site (stage III). The phage DNA is then injected at this site (stage IV). Stage I adsorption does not cause loss of motility in PBS 1 -- resistant bacilli. The loss of motility observed upon infection of sensitive cells by PBS 1 may be associated with either stage II or stage III of adsorption.  相似文献   

14.
Role of F Pili in the Penetration of Bacteriophage fl   总被引:28,自引:3,他引:25  
Early stages of infection of Escherichia coli with the filamentous bacteriophage f1 were examined in the electron microscope. Purified phage-bacteria complexes were prepared at various time intervals after the initiation of synchronous infection. Cells were scored for the total number of F pili, the number of F pili with f1 attached, the number of intact phage particles which occurred at the surface of the cell, and F pilus length. Electron microscope autoradiographs were also prepared at each time interval. The results showed that the average number of F pili with f1 attached decreased with time as phage deoxyribonucleic acid (DNA) entered the cell. Concomitant with this loss, the remaining F pili became shorter. The rate of entry of phage DNA into the cell followed, with a short lag, the rate of loss of F pili with f1 attached. During the lag period, intact phage particles accumulated at the surface of the cell. The results from radioautographs showed that no phage DNA could be located within the F pilus. These results suggest that F pili are resorbed by the cell during infection with the bacteriophage f1. Parallel experiments with noninfected cultures further suggest that pilus resorption may be a normal cellular phenomenon.  相似文献   

15.
The inactivation and mutation (to r phenotype) of extracellular coliphage T4 wild-type by the monofunctional alkylating agents N-methyl- and N-ethyl-N-nitrosourea and isopropyl methanesulphonate were investigated. The rate and extent of change in phage infectivity observed during the post-treatment period were found to correlate with what is known of the mechanisms by which these agents react in vitro. Loss of phage infectivity was found to occur during the period following treatment with these agents, but that resulting from treatment with isopropyl methanesulphonate was preceded, in the first 24 to 48 h, by a recovery of infectivity. This suggested that changes in phage infectivity occurring after treatment with monofunctional alkylating agents are resultant of various processes which diversely promote loss and recovery of infectivity. The mutagenicity of N-methyl-N-nitrosourea was similar to that of its ethyl homologue at a level of phage survival of 4 x 10-3, but less than that of isopropyl methanesulphonate. At a level of survival of 3 x 10-2 ethyl methanesulphonate was a mutagenic as its isopropyl homologue, but methyl methanesulphonate was only slightly if at all mutagenic. These results could not be correlated with the compounds' reaction mechanisms. The efficiency of isopropyl methanesulphonate (compared with its toxicity to phage) was found to decrease as the severity of the dose was increased.  相似文献   

16.
Phagolessin A58, an antibiotic substance active against a number of bacterial viruses, was studied for activity against the seven T phages. Only three of the seven phages—T1, T3, and T7—proved to be sensitive to the antibiotic. The antibiotic caused a direct, apparently irreversible inactivation of free phage particles. A study of the properties of the inactivated phage particles showed that the particles retained the ability to kill host cells and to exert mutual exclusion against an unrelated phage after infectivity was lost. There was a progressive loss in these two properties when higher concentrations of antibiotic were used to inactivate the phage. Results with inactivated T3 and T7 revealed that these two properties—the ability to kill host cells and to exclude an unrelated phage—were lost at a different rate. They were, therefore, presumed to be different properties of these particular phage particles. The inactivation of phage by phagolessin A58 was inhibited by desoxyribose nucleic acid and to a lesser extent by ribose nucleic add. Cytosine, thymine, adenine, guanine, and cysteine failed to inhibit the reaction.  相似文献   

17.
Effect of Prophage W on the Propagation of Bacteriophages T2 and T4   总被引:10,自引:7,他引:3       下载免费PDF全文
Studies have been undertaken to determine whether the temperate phage ω present in Escherichia coli strain W is responsible for the inability of this strain to act as a host for T2 and T4. E. coli WS, cured of phage ω, was sensitive to T2 and T4. Lysogenation of E. coli C and WS with phage ω resulted in loss of ability to plate T2 and T4. However, E. coli K-12 lysogens still served as hosts for the T -even phage. Two of three WS lysogens studied resembled strain W at the biochemical level. They converted about 30% of infecting T2 deoxyribonucleic acid (DNA) to acid-soluble fragments and limited macromolecular synthesis to a few minutes after infection. The third lysogen did not degrade phage DNA, and nucleic acid and protein synthesis continued for some time, although no phage production occurred. It is concluded that phage ω plays a role in the restriction of virulent phage but that it is not the only factor involved. Since acid solubilization was not observed in all cases of phage ω-mediated restriction of T -even phage, a hypothesis for the restriction has been proposed which is based on an alteration in the cell envelope after lysogenation with phage ω.  相似文献   

18.
The properties of viable mutants of bacteriophage T5 that lack, singly, each of the four major sites at which single-chain interruptions normally occur in T5 DNA are described. The mutations responsible for loss of each interruption were mapped by analysis with HhaI, a restriction endonuclease with a cleavage site (pGCGC) that occurs at the 5' termini of the major interruptions (B. P. Nichols and J. E. Donelson, J. Virol. 22:520-526, 1977). For each mutant tested, loss of a specific interruption resulted in loss of a specific HhaI cleavage site. Multiple single-site mutants were constructed to determine the effect of loss of more than one interruption on phage viability. These recombinants, including a phage that lacks the four major interruptible sites, were fully viable and did not exhibit a compensating increase in the frequency of minor interruptions. The effect of loss of a specific interruption on genetic recombination was tested in two-factor crosses with markers that occur close to, but on opposite sites of, the interruption. Loss of the interruptible site did not affect recombination frequency.  相似文献   

19.
Near-UV (NUV) (300 to 400 nm) and far-UV (FUV) (254 nm) radiations damage bacteriophage by different mechanisms. Host cell reactivation, Weigle reactivation, and multiplicity reactivation were observed upon FUV, but not upon NUV irradiation. Also, the number of his+ recombinants increased with P22 bacteriophage transduction in Salmonella typhimurium after FUV, but not after NUV irradiation. This loss of reactivation and recombination after NUV irradiation was not necessarily due to host incapability to repair phage damage. Instead, the phage genome failed to enter the host cell after NUV irradiation. In the case of NUV-irradiated T7 phage, this was determined by genetic crosses with amber mutants, which demonstrated that either "all" or "none" of a T7 genome entered the Escherichia coli cell after NUV treatment. Further studies with radioactively labeled phage indicated that irradiated phage failed to adsorb to host cells. This damage by NUV was compared with the protein-DNA cross-link observed previously, when phage particles were irradiated with NUV in the presence of H2O2. H2O2 (in nonlethal concentration) acts synergistically with NUV so that equivalent phage inactivation is achieved by much lower irradiation doses.  相似文献   

20.
A Shapira  A Kohn 《Cryobiology》1974,11(5):452-464
The damage by freeze-drying to bacteriophage T4 was analysed in order to locate the site and the mechanism of damage. As a result of freeze-drying of bacteriophage T4, its head coat was damaged so as to lead to the loss of the DNA and emptying of the head. The tail assembly was generally undamaged and the freeze-dried phage preserved the biological activities concerned with absorption and injection (inhibition of host colony formation, inhibition of induction of beta-galactosidase, induction of changes in the potassium content in the host bacteria).The 2 mechanisms by which the freeze-drying damages the phage arc: osmotic shock, which occurs mainly during the resuspension of the FD phage, and the drying per se, i.e., the removal of water from the head protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号