首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

2.
Store-operated Ca2+ entry (SOCE) due to activation of Ca2+ release-activated Ca2+ (CRAC) channels leads to sustained elevation of cytoplasmic Ca2+ and activation of lymphocytes. CRAC channels consisting of four pore-forming Orai1 subunits are activated by STIM1, an endoplasmic reticulum Ca2+ sensor that senses intracellular store depletion and migrates to plasma membrane proximal regions to mediate SOCE. One of the fundamental properties of CRAC channels is their Ca2+-dependent fast inactivation. To identify the domains of Orai1 involved in fast inactivation, we have mutated residues in the Orai1 intracellular loop linking transmembrane segment II to III. Mutation of four residues, V151SNV154, at the center of the loop (MutA) abrogated fast inactivation, leading to increased SOCE as well as higher CRAC currents. Point mutation analysis identified five key amino acids, N153VHNL157, that increased SOCE in Orai1 null murine embryonic fibroblasts. Expression or direct application of a peptide comprising the entire intracellular loop or the sequence N153VHNL157 blocked CRAC currents from both wild type (WT) and MutA Orai1. A peptide incorporating the MutA mutations had no blocking effect. Concatenated Orai1 constructs with four MutA monomers exhibited high CRAC currents lacking fast inactivation. Reintroduction of a single WT monomer (MutA-MutA-MutA-WT) was sufficient to fully restore fast inactivation, suggesting that only a single intracellular loop can block the channel. These data suggest that the intracellular loop of Orai1 acts as an inactivation particle, which is stabilized in the ion permeation pathway by the N153VHNL157 residues. These results along with recent reports support a model in which the N terminus and the selectivity filter of Orai1 as well as STIM1 act in concert to regulate the movement of the intracellular loop and evoke fast inactivation.  相似文献   

3.
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.  相似文献   

4.
Store-operated Ca2+ entry (SOCE) is a universal mechanism to increase intracellular Ca2+ concentrations in non-excitable cells. It is initiated by the depletion of ER Ca2+ stores, activation of stromal interaction molecule (STIM) 1 and gating of the Ca2+ release activated Ca2+ (CRAC) channel ORAI1 in the plasma membrane. We identified a minimal activation domain in the cytoplasmic region of STIM1 (CCb9) which activated Ca2+ influx and CRAC currents (ICRAC) in the absence of store depletion similar to but more potently than the entire C terminus of STIM1. A STIM1 fragment (CCb7) that is longer by 31 amino acids than CCb9 at its C terminal end showed reduced ability to constitutively activate ICRAC consistent with our observation that CCb9 but not CCb7 efficiently colocalized with and bound to ORAI1. Intracellular application of a 31 amino acid peptide contained in CCb7 but not CCb9 inhibited constitutive and store-dependent CRAC channel activation. In summary, these findings suggest that CCb9 represents a minimal ORAI1 activation domain within STIM1 that is masked by an adjacent 31 amino acid peptide preventing efficient CRAC channel activation in cells with replete Ca2+ stores.  相似文献   

5.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

6.
Store-operated calcium entry (SOCE) is a major mechanism for Ca2+ entry in excitable and non-excitable cells. The best-characterised store-operated current is ICRAC, but other currents activated by Ca2+ store depletion have also been reported. The recent identification of the proteins stromal interaction molecule 1 (STIM1) and Orai1 has shed new light on the nature and regulation of SOC channels. STIM1 has been presented as the endoplasmic reticulum (ER) Ca2+ sensor that communicates the content of the Ca2+ stores to the store-operated channels, a mechanism that involves redistribution of STIM1 to peripheral ER sites and co-clustering with the Ca2+ channel subunit, Orai1. Interestingly, TRPC1, which has long been proposed as a SOC channel candidate, associates with Orai1 and STIM1 in a ternary complex that appears to increase the variability of SOC currents available to modulate cell function.  相似文献   

7.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

8.
Depletion of Ca2+ from the endoplasmic reticulum (ER) lumen triggers the opening of Ca2+ release-activated Ca2+ (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca2+ store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1.  相似文献   

9.
Store-operated calcium entry (SOCE) has been proposed as the main process controlling Ca2+ entry in non-excitable cells. Although recent breakthroughs in experimental studies of SOCE have been made, its mathematical modeling has not been developed. In the present work, SOCE is viewed as a feedback control system subject to an extracellular agonist disturbance and an extracellular calcium input. We then design a dynamic output feedback controller to reject the disturbance and track Ca2+ resting levels in the cytosol and the endoplasmic reticulum (ER). The constructed feedback control system is validated by published experimental data and its global asymptotic stability is proved by using the LaSalle’s invariance principle. We then simulate the dynamic responses of STIM1 and Orai1, two major components in the operation of the store-operated channels, to the depletion of Ca2+ in the ER with thapsigargin, which show that: (1) Upon the depletion of Ca2+ in the ER, the concentrations of activated STIM1 and STIM1-Orai1 cluster are elevated gradually, indicating that STIM1 is accumulating in the ER-PM junctions and that the cytosolic portion of the active STIM1 is binding to Orai1 and driving the opening of CRAC channels for Ca2+ entry; (2) after the extracellular Ca2+ addition, the concentrations of both STIM1 and STIM1-Orai1 cluster decrease but still much higher than the original levels. We also simulate the system responses to the agonist disturbance, which show that, when a sequence of periodic agonist pulses is applied, the system returns to its equilibrium after each pulse. This indicates that the designed feedback controller can reject the disturbance and track the equilibrium.  相似文献   

10.
In addition to its well established function in activating Ca2+ release from the endoplasmic reticulum (ER) through ryanodine receptors (RyR), the second messenger cyclic ADP-ribose (cADPR) also accelerates the activity of SERCA pumps, which sequester Ca2+ into the ER. Here, we demonstrate a potential physiological role for cADPR in modulating cellular Ca2+ signals via changes in ER Ca2+ store content, by imaging Ca2+ liberation through inositol trisphosphate receptors (IP3R) in Xenopus oocytes, which lack RyR. Oocytes were injected with the non-metabolizable analog 3-deaza-cADPR, and cytosolic [Ca2+] was transiently elevated by applying voltage-clamp pulses to induce Ca2+ influx through expressed plasmalemmal nicotinic channels. We observed a subsequent potentiation of global Ca2+ signals evoked by strong photorelease of IP3, and increased numbers of local Ca2+ puffs evoked by weaker photorelease. These effects were not evident with cADPR alone or following cytosolic Ca2+ elevation alone, indicating that they did not arise through direct actions of cADPR or Ca2+ on the IP3R, but likely resulted from enhanced ER store filling. Moreover, the appearance of a new population of puffs with longer latencies, prolonged durations, and attenuated amplitudes suggests that luminal ER Ca2+ may modulate IP3R function, in addition to simply determining the size of the available store and the electrochemical driving force for release.  相似文献   

11.
Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction.Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only μs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

12.
In malignant hyperthermia (MH), mutations in RyR1 underlie direct activation of the channel by volatile anesthetics, leading to muscle contracture and a life-threatening increase in core body temperature. The aim of the present study was to establish whether the associated depletion of sarcoplasmic reticulum (SR) Ca2+ triggers sarcolemmal Ca2+ influx via store-operated Ca2+ entry (SOCE). Samples of vastus medialis muscle were obtained from patients undergoing assessment for MH susceptibility using the in vitro contracture test. Single fibers were mechanically skinned, and confocal microscopy was used to detect changes in [Ca2+] either within the resealed t-system ([Ca2+]t-sys) or within the cytosol. In normal fibers, halothane (0.5 mm) failed to initiate SR Ca2+ release or Ca2+t-sys depletion. However, in MH-susceptible (MHS) fibers, halothane induced both SR Ca2+ release and Ca2+t-sys depletion, consistent with SOCE. In some MHS fibers, halothane-induced SR Ca2+ release took the form of a propagated wave, which was temporally coupled to a wave of Ca2+t-sys depletion. SOCE was potently inhibited by “extracellular” application of a STIM1 antibody trapped within the t-system but not when the antibody was denatured by heating. In conclusion, (i) in human MHS muscle, SR Ca2+ depletion induced by a level of volatile anesthetic within the clinical range is sufficient to induce SOCE, which is tightly coupled to SR Ca2+ release; (ii) sarcolemmal STIM1 has an important role in regulating SOCE; and (iii) sustained SOCE from an effectively infinite extracellular Ca2+ pool may contribute to the maintained rise in cytosolic [Ca2+] that underlies MH.  相似文献   

13.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

14.
Store-operated Ca2+ entry (SOCE) is a widespread mechanism to elevate the intracellular Ca2+ concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca2+ store depletion that subsequently activates Ca2+-release-activated-Ca2+ (CRAC) channels, a prototype of store-operated Ca2+ (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca2+ sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.  相似文献   

15.
16.
17.
Store-operated Ca2+ entry (SOCE) represents a ubiquitous Ca2+ influx pathway activated by the filling state of intracellular Ca2+ stores. SOCE is mediated by coupling of STIM1, the endoplasmic reticulum Ca2+ sensor, to the Orai1 channel. SOCE inactivates during meiosis, partly because of the inability of STIM1 to cluster in response to store depletion. STIM1 has several functional domains, including the Orai1 interaction domain (STIM1 Orai Activating Region (SOAR) or CRAC Activation Domain (CAD)) and STIM1 homomerization domain. When Ca2+ stores are full, these domains are inactive to prevent constitutive Ca2+ entry. Here we show, using the Xenopus oocyte as an expression system, that the C-terminal 200 residues of STIM1 are important to maintain STIM1 in an inactive state when Ca2+ stores are full, through predicted intramolecular shielding of the active STIM1 domains (SOAR/CAD and STIM1 homomerization domain). Interestingly, our data argue that the C-terminal 200 residues accomplish this through a steric hindrance mechanism because they can be substituted by GFP or mCherry while maintaining all aspects of STIM1 function. We further show that STIM1 clustering inhibition during meiosis is independent of the C-terminal 200 residues.  相似文献   

18.
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and in turn, initiates store-operated Ca2+ entry (SOCE), one of the major mechanisms to raise the intracellular Ca2+ concentrations in T cells. Ca2+-release-activated-Ca2+ (CRAC) channels are a prototype of store-operated Ca2+ (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca2+ sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca2+ signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.  相似文献   

19.
Three decades ago, James W. Putney Jr. conceptualized the idea of store-operated calcium entry (SOCE) to explain how depletion of endoplasmic reticulum (ER) Ca2+ stores evokes Ca2+ influx across the plasma membrane. Since the publication of this highly influential idea, it is now established that SOCE is universal among non-excitable and probably even many types of excitable cells, and contributes to numerous effector functions impacting immunity, muscle contraction, and brain function. The molecules encoding SOCE, the STIM and Orai proteins, are now known and our understanding of how this pathway is activated in response to ER Ca2+ store depletion has advanced significantly. In this review, we summarize the current knowledge of how Orai1 channels are activated by STIM1, focusing on recent work supporting a hydrophobic gating mechanism for the opening of the Orai1 channel pore.  相似文献   

20.
The ryanodine receptor/Ca2+-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca2+ release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca2+ channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in “hot spot” regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca2+ release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca2+-ATPase 1A and the α1S subunit of the L-type Ca2+ channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca2+ flux in skeletal muscle that mediates excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号