首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
心脏发育及心脏疾病干细胞的治疗要求对心脏发育过程中的控制细胞增殖及分化的相关基因的作用机制进行深入了解.Islet1基因(Isl1基因)含有6个外显子和5个内含子,定位于人类5号染色体5q11.2.该基因在基因组内约占12kb,目前所知其最长可读框(ORF)至少由5个外显子组成,编码一个由384个氨基酸组成的转录因子蛋白.最近研究发现,不同的心脏细胞可能源于同一种多能心脏祖细胞—Isl1+细胞,心脏的这一发育模式与血液细胞的形成模式非常相像.另外有研究结果显示,Isl1是与心脏发育密切相关的转录因子之一,其表达随着心脏发育成熟而逐渐下调.虽然针对Isl1基因做了较多的研究工作,但是它表达调控的具体模式及发挥功能的详细作用机制目前仍未完全清楚,本文对最近几年Isl1基因的研究进展作一综述.  相似文献   

2.
3.
Islet1 cardiovascular progenitors: a single source for heart lineages?   总被引:5,自引:0,他引:5  
The creation of regenerative stem cell therapies for heart disease requires that we understand the molecular mechanisms that govern the fates and differentiation of the diverse muscle and non-muscle cell lineages of the heart. Recently, different cardiac cell types have been reported to arise from a common, multipotent Islet1 (Isl1)-positive progenitor, suggesting that a clonal model of heart lineage diversification might occur that is analogous to hematopoiesis. The ability to isolate, renew and differentiate Isl1(+) precursors from postnatal and embryonic hearts and from embryonic stem cells provides a powerful cell-based system for characterizing the signaling pathways that control cardiovascular progenitor formation, renewal, lineage specification and conversion to specific differentiated progeny.  相似文献   

4.
5.
Optimal insulin secretion required to maintain glucose homeostasis is the summation of total pancreatic islet β cell mass and intrinsic secretory capacity of individual β cells, which are regulated by distinct mechanisms that could be amplified by glucagon-like-peptide-1 (GLP-1). Because of these actions of GLP-1 on islet β cells, GLP-1 has been deployed to?treat diabetes. We employed SNARE protein VAMP8-null mice to demonstrate that VAMP8 mediates insulin granule recruitment to the plasma membrane, which partly accounts for GLP-1 potentiation of glucose-stimulated insulin secretion. VAMP8-null mice also exhibited increased islet β cell mass from increased β cell mitosis, with β cell proliferative activity greatly amplified by GLP-1. Thus, despite the β cell exocytotic defect, VAMP8-null mice have an increased total insulin secretory capacity, which improved glucose homeostasis. We conclude that these VAMP8-mediated events partly underlie the therapeutic actions of GLP-1 on insulin secretion and β cell growth.  相似文献   

6.
7.
《Cell metabolism》2014,19(3):498-511
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
The process of islet transplantation for treating type 1 diabetes has been limited by the high level of graft failure. This may be overcome by locally delivering trophic factors to enhance engraftment. Regenerating islet-derived protein 3α (Reg3α) is a pancreatic secretory protein which functions as an antimicrobial peptide in control of inflammation and cell proliferation. In this study, to investigate whether Reg3α could improve islet engraftment, a marginal mass of syngeneic islets pretransduced with adenoviruses expressing Reg3α or control EGFP were transplanted under the renal capsule of streptozotocin-induced diabetic mice. Mice receiving islets with elevated Reg3α production exhibited significantly lower blood glucose levels (9.057 ± 0.59 mmol/L versus 13.48 ± 0.35 mmol/L, P < 0.05) and improved glucose-stimulated insulin secretion (1.80 ± 0.17 ng/mL versus 1.16 ± 0.16 ng/mL, P < 0.05) compared with the control group. The decline of apoptotic events (0.57% ± 0.15% versus 1.06% ± 0.07%, P < 0.05) and increased β-cell proliferation (0.70% ± 0.10% versus 0.36% ± 0.14%, P < 0.05) were confirmed in islet grafts overexpressing Reg3α by morphometric analysis. Further experiments showed that Reg3α production dramatically protected cultured islets and pancreatic β cells from cytokine-induced apoptosis and the impairment of glucose-stimulated insulin secretion. Moreover, exposure to cytokines led to the activation of MAPKs in pancreatic β cells, which was reversed by Reg3α overexpression in contrast to control group. These results strongly suggest that Reg3α could enhance islet engraftments through its cytoprotective effect and advance the therapeutic efficacy of islet transplantation.  相似文献   

10.
11.
The co-culturing of insulinoma and islet-derived endothelial cell (iEC) lines results in the spontaneous formation of free-floating pseudoislets (PIs). We previously showed that iEC-induced PIs display improved insulin expression and secretion in response to glucose stimulation. This improvement was associated with a de novo deposition of extracellular matrix (ECM) proteins by iECs in and around the PIs. Here, iEC-induced PIs were used to study the expression and posttranslational modification of the ECM receptor integrin β1. A wide array of integrin β subunits was detected in βTC3 and NIT-1 insulinomas as well as in primary islets, with integrin β1 mRNA and protein detected in all three cell types. Interestingly, the formation of iEC-induced PIs altered the glycosylation patterns of integrin β1, resulting in a higher molecular weight form of the receptor. This form was found in native pancreas but was completely absent in monolayer β-cells. Fluorescence-activated cell sorting analysis of monolayers and PIs revealed a higher expression of integrin β1 in PIs. Antibody-mediated blocking of integrin β1 led to alterations in β-cell morphology, reduced insulin gene expression, and enhanced glucose secretion under baseline conditions. These results suggest that iEC-induced PI formation may alter integrin β1 expression and posttranslational modification by enhancing glycosylation, thereby providing a more physiological culture system for studying integrin-ECM interactions in β cells.  相似文献   

12.
Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca2+-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.  相似文献   

13.
14.
15.
Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.  相似文献   

16.
17.
18.
19.
The abnormal self-assembly of a number of proteins or peptides is a hallmark of >20 amyloidogenic diseases. Recent studies suggest that the pathology of amyloidogenesis can be attributed primarily to cytotoxic, soluble, intermediate oligomeric species rather than to mature amyloid fibrils. Despite the lack of available structural information regarding these transient species, many therapeutic efforts have focused on inhibiting the formation of these aggregates. One of the most successful approaches has been to use small molecules, many of which have been found to inhibit toxic species with high efficacy. A significant issue that remains to be resolved is the mechanism underlying the inhibitory effects of these molecules. In this article, we present extensive replica-exchange molecular dynamics simulations to study the early aggregation of the human islet amyloid polypeptide segment 22–27 in the presence and absence of the small-molecule inhibitor resveratrol. The simulations indicate that aggregation of these peptides was hindered by resveratrol via a mechanism of blocking the lateral growth of a single-layered β-sheet oligomer (rather than preventing growth by elongation along the fibril axis). Intersheet side-chain stacking, especially stacking of the aromatic rings, was blocked by the presence of resveratrol molecules, and the overall aggregation level was reduced.  相似文献   

20.
Pancreatic islet β cell tumor is the most common islet cell tumor. A well-characterized tumor progression in Rip1-Tag2 mice undergoes five stages, involving normal, hyperplasia, angiogenic islets, tumorigenesis and invasive carcinoma. 1H NMR based metabonomics was applied to identify potential biomarkers for monitoring pancreatic islet β cell tumor progression in Rip1-Tag2 mice. Multivariate analysis results showed the serum metabonome at hyperplasia stage shared the similar characteristics with the ones at normal stage as a result of slight proliferation of pancreatic islet β cells. At angiogenic islets stage, the up-regulated glycolysis, disturbed choline and phospholipid metabolism composed the metabolic signature. In addition to the changes mentioned above, several metabolites were identified as early biomarkers for tumorigenesis, including increased methionine, citrate and choline, and reduced acetate, taurine and glucose, which suggested the activated energy and amino acid metabolism. All the changes were aggravated at invasive carcinoma stage, coupled with notable changes in alanine, glutamate and glycine. Moreover, the distinct metabolic phenotype was found associated with the implanting of SV40 large T antigen in Rip1-Tag2 mice. The combined metabolic and multivariate statistics approach provides a robust method for screening the biomarkers of disease progression and examining the association between gene and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号