首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell wall synthesis was studied by determining the incorporation of [14C]-glucose into epidermal and cortical cell walls of etiolated Pisum sativum L. cv. Alaska stem segments. Walls were fractionated into the matrix and cellulose components, and incorporation into these components assessed in terms of the total uptake of label into that tissue. When segments were allowed to elongate, the stimulation of total glucose uptake by indole-3-acetic acid (IAA) and fusicoccin (FC) was greater than their stimulation of incorporation. IAA and FC thus did not stimulate precursor incorporation in elongating segments. When elongation was inhibited by calcium, however, IAA and FC significantly promoted wall synthesis in the cortex and vasular tissue (which shows almost no growth or acidification response to auxin). In these tissues incorporation into matrix and cellulose was promoted approximately equally. In the epidermis (thought to be the tissue responsive to auxin in the control of growth), FC promoted a significant increase in wall synthesis, although less than that in the cortex, while there was some evidence of a similar promotion by IAA. Both IAA and FC had a greater effect on incorporation into the matrix component of the wall than into cellulose. The results that FC caused a substantial promotion of cell wall synthesis which was not due solely to elongation, and that the inner non-growth responsive cortical tissues can respond to IAA. Moreover, a comparison of the effects of IAA and FC on the different components of the wall suggests that the response in the epidermis differs from that in the other tissues.  相似文献   

2.
The role of cell wall synthesis in sustained auxin-induced growth   总被引:2,自引:0,他引:2  
The dependence of auxin-induced growth on continued cell wall synthesis was investigated in stem segments of etiolated pea ( Pisum sativum L. cv. Alaska) seedlings using the cell wall synthesis inhibitors monensin and 2,6-dichlorobenzonitrile (DCB). Monensin (5 μ M ) potently inhibited indole-3-acetic acid (IAA)-induced growth, particularly during the second hour of treatment, whereas growth in fusicoccin (FC) was inhibited much less effectively. Incorporation of [14C]-glucose into both matrix and cellulose fractions of the wall showed a sharp increase beginning after about 60 min, this rise being promoted by both IAA and FC. Monensin inhibited this rise in incorporation of label and completely removed the promotion of this by IAA, although some promotion by FC remained. Monensin inhibited incorporation into cellulose in a manner similar to that into matrix, but the use of the apparently specific cellulose synthesis inhibitor DCB showed that cellulose synthesis could be strongly inhibited without effect on growth, at least in the short term. The results support the view that sustained auxin-induced growth depends upon the incorporation of new matrix cell wall components into the wall.  相似文献   

3.
The inhibitory mode of action of jasmonic acid (JA) on the growth of etiolated oat (Avena sativa L. cv. Victory) coleoptile segments was studied in relation to the synthesis of cell wall polysaccharides using [14C]glucose. Exogenously applied JA significantly inhibited indoleacetic acid (IAA)-induced elongation of oat coleoptile segments and prevented the increase of the total amounts of cell wall polysaccharides in both the noncellulosic and cellulosic fractions during coleoptile growth. JA had no effect on neutral sugar compositions of hemicellulosic polysaccharides but substantially inhibited the IAA-stimulated incorporation of [14C]glucose into noncellulosic and cellulosic polysaccharides. JA-induced inhibition of growth was completely prevented by pretreating segments with 30 mm sucrose for 4 h before the addition of IAA. The endogenous levels of UDP-sugars, which are key intermediates for the synthesis of cell wall polysaccharides, were not reduced significantly by JA. Although these observations suggest that the inhibitory mode of action of JA associated with the growth of oat coleoptile segments is relevant to sugar metabolism during cell wall polysaccharide synthesis, the precise site of inhibition remains to be investigated.Abbreviations JA jasmonic acid - ABA abscisic acid - IAA indoleacetic acid - T 0 minimum stress relaxation time - TFA trifluoroacetic acid - TCA trichloroacetic acid - HPLC high-performance liquid chromatography - EtOAc ethyl acetate - TLC thin-layer chromatography - JA-Me methyl jasmonate - GLC-SIM gas-liquid chromatography-selected ion monitoring  相似文献   

4.
The effect of auxin on the mass per area in the outer epidermal walls of third internodes of Pisum sativum L. cv. Alaska grown in dim red light was investigated using interference microscopy, and rates of net deposition of wall material were calculated. Examination of these net rates under different growth conditions showed that there is no simple relationship between the deposition of mass and growth. Net deposition can be proportional to growth when sufficient substrate for wall synthesis is available, as in intact plants, and in segments treated with indole-3-acetic acid (IAA) plus glucose. Net deposition can cause thickening of the walls when growth is small, as in the case of segments kept without IAA in the presence or absence of glucose, or segments whose growth is inhibited with mannitol. When substrate is limited and growth is large, however, wall expansion can occur with no net deposition, or an actual net loss of wall material can even take place. Auxin appears to induce a breakdown in the walls of segments treated in the absence of glucose, although it promotes synthesis when glucose is present. It is likely that IAA always induces a breakdown of wall material, but that the breakdown is masked when substrate is available for synthesis. Our results indicate that pea epidermal cells have two different auxin-stimulated mechanisms, wall synthesis and wall breakdown, potentially available to loosen their outer epidermal walls to bring about cell enlargement, alternatives which could be employed to different extents depending on substrate conditions.Abbreviation IAA indole-3-acetic acid M.S. Bret-Harte would like to thank Drs. Peter M. Ray, Stanford University, Winslow R. Briggs, Carnegie Institute of Washington, Stanford, Calif. USA, and Wendy K. Silk, of the University of California Davis USA, for helpful discussions, Dr. Briggs and the Carnegie Institute of Washington for the use of experimental facilities, and Dr. Ray for editorial assistance. This work was supported by a National Science Foundation Graduate Fellowship to M.S.B.-H., a National Science Foundation Postdoctoral Fellowship to T.I.B., and National Science Foundation grant DCB8801493 to P.B.G.  相似文献   

5.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

6.
Treatment of etiolated pea (Pisum sativum L.) internode tissue with ethylene gas inhibits elongation and induces lateral expansion. Precise kinetics of the induction of this altered mode of growth of excised internode segments were recorded using a double laser optical monitoring device. Inhibition of elongation and promotion of lateral expansion began after about 1 hour of treatment and achieved a maximum by 3 hours. Similar induction kinetics were observed after treating internodes with colchicine and 2,6-dichlorobenzonitrile, an inhibitor of cellulose synthesis. In sealed flask experiments, ethylene had no detectable effect on incorporation of label from [14C]glucose into any of the classical pectin, hemicellulose, or cellulose wall fractions. Ethylene inhibited fresh weight increase (total cell expansion) of both excised internode segments (in sealed flasks) and intact seedlings. Ethylene treatment resulted in an increase in cell sap osmolality in those tissues (intact and excised) which are inhibited by the gas. A model for ethylene-induced inhibition of elongation and induction of lateral expansion is presented.  相似文献   

7.
Auxin promotes the liberation of a xlyoglucan polymer from the cell walls of elongating pea (Pisum sativum) stem segments. The released polymer can be isolated from the polysaccharide fraction of the water-soluble portion of tissue homogenates, thus providing as assay for this kind of metabolism. Promotion of xyloglucan metabolism by auxin begins within 15 minutes of hormone presentation. The effect increases with auxin concentration in a manner similar to the hormone effect on elongation. However, the xyloglucan effect of auxin occurs perfectly normally when elongation is completely blocked by mannitol. Metabolic inhibitors and Ca2+, on the other hand, inhibit auxin promotion of elongation and of xyloglucan metabolism in parallel. The results suggest that the changes in xyloglucan reflect the means by which auxin modifies the cell wall to cause elongation.  相似文献   

8.
Gibberellic acid (GA) stimulated both the elongation of Avena sativa stem segments and increased synthesis of cell wall material. The effects of GA on glucose metabolism, as related to cell wall synthesis, have been investigated in order to find specific events regulated by GA. GA caused a decline in the levels of glucose, glucose 6-phosphate, and fructose 6-phosphate if exogenous sugar was not supplied to the segments, whereas the hormone caused no change in the levels of glucose 6-phosphate, fructose 6-phosphate, UDP-glucose, or the adenylate energy charge if the segments were incubated in 0.1 m glucose. No GA-induced change could be demonstrated in the activities of hexokinase, phosphoglucomutase, UDP-glucose pyrophosphorylase, or polysaccharide synthetases using UDP-glucose, UDP-galactose, UDP-xylose, and UDP-arabinose as substrates. GA stimulated the activity of GDP-glucose-dependent β-glucan synthetase by 2- to 4-fold over the control. When glucan synthetase was assayed using UDP-glucose as substrate, only β-1,3-linked glucan was synthesized in vitro, whereas with GDP-glucose, only β-1,4-linked glucan was synthesized. These results suggest that one part of the mechanism by which GA stimulates cell wall synthesis concurrently with elongation in Avena stem segments may be through a stimulation of cell wall polysaccharide synthetase activity.  相似文献   

9.
Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.  相似文献   

10.
Auxin-induced changes in cell wall polysaccharide composition and enzyme activity of seta segments from the liverwort Pellia epiphylla (L.) Corda were studied using colorimetric, gas chromatographic, radioactive tracer, and viscometric techniques. Extension-growth of segments doubled in the presence of aqueous 10 μ M indole-3-acctic acid (IAA) ± 50 m M glucose. IAA-enhanced growth was accompanied by (1) enhanced synthesis of all wall polysaccharides but cellulose, (2) increase in the relative glucose content of neutral wall sugars, and (3) change in the activity of wall-bound glycosidase relative to controls, but no change in the activity of cellulase. Galactose and mannose (50 m M ) suppressed auxin enhancement of both growth and wall synthesis. These findings suggest that auxin-mediated extension-growth of Pellia setae is dependent upon the maintenance of non-cellulosic cell-wall synthesis.  相似文献   

11.
Stress-relaxation parameters were compared under different experimentalconditions using 5th internode segments of light-grown pea seedlingsand coleoptile segments of dark-grown Avena seedlings. The followingresults were obtained. 1. In a short incubation period at 25?C, IAA caused a decreasein the minimum relaxation time, To, of the epidermal cell wallof pea internodes when it induced elongation; the optimum concentrationof IAA for decreasing To was 10 mg/liter. 2. At all concentrations of IAA used, 0.1–1000 mg/liter,the relationship between the To value of the epidermal cellwall peeled from segments incubated for 2 hr and the subsequentelongation rate in 2–3 hr incubation was linear, indicatingthat the To value of the cell wall at a certain time regulatesthe rate of the following elongation. 3. When segments of pea epicotyls or Avena coleoptiles wereincubated in mannitol solution of various concentrations inthe presence and absence of IAA and then allowed to grow inthe absence of both mannitol and IAA, the segments extendeddifferently depending upon the mannitol concentration, whichwas less than 0.3 M, given during preincubation. 4. The To and b (relaxation rate, S/log t) values were smallerin the cell wall of segments which extended more, than in thosewhich extended less. In this case, 0.2 M mannitol solution wasmost effective, since it inhibited IAA-induced elongation duringpre-incubation and the segments thus incubated extended themost afterward. 5. Extensibility, mm/gr, seemed to parallel the elongation whichhad occurred during pre-incubation, indicating that this value,contrary to To, represented at least partly the result of elongation. From these results we concluded that the growth rate to followis regulated by the minimum stress relaxation time, To, andpossibly by the relaxation rate, b, of the cell wall beforeextension, and these parameters may represent certain biochemicalmodifications of the cell wall components needed for cell extension. (Received August 12, 1974; )  相似文献   

12.
13.
The growth-promoting effect of xyloglucan-derived oligosaccharides was investigated using a bioassay with entire pea (Pisum sativum L., var Alaska) shoots. After a 24-h incubation period at 25[deg]C, xyloglucan oligosaccharide (XGO) solutions with concentrations of 10-6 M notably increased the growth rate of pea shoots, whereas the same oligosaccharides at 10-7 M were less effective. To investigate the possible correlation between growth rate changes in the XGO-treated shoots and changes in the wall mechanical properties of their growing regions (third internodes), we used a short-term creep assay. The promotion of elongation by XGOs was reflected in an enhancement of the viscoelasticity of the growing regions of the shoots. To show whether this effect on wall viscoelastic properties was the cause or a consequence of their growth promotion, we tested the effect of XGOs on the long-term extension of isolated cell walls. We characterized an acid-induced extension in isolated cell walls from pea shoots that was not inhibited by preincubation in neutral buffers. Exogenously added XGOs did not alter the pattern of pea segment extension at any pH tested, indicating that XGOs have no direct effect on cell wall viscoelasticity. Finally, preincubation of pea segments in neutral buffers with XGOs enhanced their capacity to extend under acidic conditions. This finding suggests that XGOs at a neutral pH can act via transglycosylation, weakening the wall matrix and making the wall more responsive to other mechanisms of acid-induced extension as an expansin-mediated extension.  相似文献   

14.
Effects of indoleacetic acid (IAA) and of turgor changes on the apparent molecular mass (Mr) distributions of cell wall matrix polysaccharides from etiolated pea (Pisum sativum L.) epicotyl segments were determined by gel filtration chromatography. IAA causes a two- to threefold decline in the peak Mr of xyloglucan, relative to minus-auxin controls, to occur within 0.5 hour. IAA causes an even larger decrease in the peak Mr concurrently biosynthesized xyloglucan, as determined by [3H]fucose labeling, but this effect begins only after 1 hour. In contrast, IAA does not appreciably affect the Mr distributions of pectic polyuronides or hemicellulosic arabinose/galactose polysaccharides within 1.5 hours. However, after epicotyl segments are cut, their peak polyuronide Mr increases and later decreases, possibly as part of a wound response. Xyloglucan also undergoes IAA-independent changes in its Mr distribution after cutting segments. In addition, the peak Mr of newly deposited xyloglucan increases from about 9 kilodaltons shortly after deposition to about 30 kilodaltons within 0.5 hour. This may represent a process of integration into the cell wall. A step increase in turgor causes the peak Mr of previously deposited xyloglucan (but not of the other major polymers) to increase about 10-fold within 0.5 hour, returning to its initial value by 1.5 hours. This upshift may comprise a feedback mechanism that decreases wall extensibility when the rate of wall extension suddenly increases. IAA-induced reduction of xyloglucan Mr might cause wall loosening that leads to cell enlargement, as has been suggested previously, but the lack of a simple relation between xyloglucan Mr and elongation rate indicates that loosening must also involve other wall factors, one of which might be the deposition of new xyloglucan of much smaller size. Although the Mr shifts in polyuronides may represent changes in noncovalent association, and for xyloglucan this cannot be completely excluded, xyloglucan seems to participate in a dynamic process that can both decrease and increase its chain length, possible mechanisms for which are suggested.  相似文献   

15.
H. Edelmann  R. Bergfeld  P. Schonfer 《Planta》1989,179(4):486-494
The involvement of cell-wall polymer synthesis in auxin-mediated elongation of coleoptile segments from Zea mays L. was investigated with particular regard to the growth-limiting outer epidermis. There was no effect of indole acetic acid (IAA) on the incorporation of labeled glucose into the major polysaccharide wall fractions (cellulose, hemicellulose) within the first 2 h of IAA-induced growth. 2,6-Dichlorobenzonitrile inhibited cellulose synthesis strongly but had no effect on IAA-induced segment elongation even after a pretreatment period of 24 h, indicating that the growth response is independent of the apposition of new cellulose microfibrils at the epidermal cell wall. The incorporation of labeled leucine into total and cell-wall protein of the epidermis was promoted by IAA during the first 30 min of IAA-induced growth. Inhibition of IAA-induced growth by protein and RNA-synthesis inhibitors (cycloheximide, cordycepin) was accompanied by an inhibition of leucine incorporation into the epidermal cell wall during the first 30 min of induced growth but had no effect on the concomitant incorporation of monosaccharide precursors into the cellulose or hemicellulose fractions of this wall. It is concluded that at least one of the epidermal cell-wall proteins fulfills the criteria for a growth-limiting protein induced by IAA at the onset of the growth response. In contrast, the synthesis of the polysaccharide wall fractions cellulose and hemicellulose, as well as their transport and integration into the growing epidermal wall, appears to be independent of growth-limiting protein and these processes are therefore no part of the mechanism of growth control by IAA.Abbreviations CHI cycloheximide - COR cordycepin - DCB 2,6-dichlorobenzonitrile - GLP growth-limiting protein(s) - IAA indole-3-acetic acid  相似文献   

16.
The effect of cycloheximide (CH) on the indol-3yl-acetic acid (IAA)-stimulated transport of 14C-labelled abscisic acid (ABA) and 14C-labelled sucrose was studied in 110 mm long pea epicotyl segments. IAA application resulted in elongation growth of the segments. This effect was decreased by CH treatment which also reduced [14C] ABA and [14C] sucrose accumulation in the growing apical part of the segments. A reduction in [14C] IAA uptake and in protein synthesis in this part of the segments was also observed. The simultaneous inhibition of protein synthesis and reduction of [14C] ABA and [14C] sucrose transport suggests that IAA can stimulate the transport of ABA and sucrose through a protein synthesis-based elongation growth.  相似文献   

17.
Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.  相似文献   

18.
The possible involvement of auxin in the action of gibberellin in stimulating cell elongation was examined by comparing the effects of gibberellic acid (GA) and IAA on the growth, osmoregulation and cell wall properties of the Alaska pea ( Pisum sativum L. cv. Alaska) subhook. Both GA and IAA stimulated cell elongation in the subhook region of derooted cuttings. Cotyledon excision decreased the stimulating effect of GA on the growth of the subhook region, but did not affect that of IAA. As the subhook region elongated, the osmotic potential of the cell sap and the total amount of osmotic solutes increased. Cotyledon excision accelerated the increase in the osmotic potential and suppressed the accumulation of osmotic solutes. In cuttings with cotyledons. GA partly counteracted the increase in the osmotic potential and substantially promoted the accumulation of osmotic solutes. On the other hand, in cuttings without cotyledons. GA did not affect the change in the osmotic potential although it slightly promoted the accumulation of osmotic solutes. IAA accelerated the increase in the osmotic potential, but did not affect the accumulation of osmotic solutes. IAA enhanced the extensibility of the cell wall, while GA did not affect it. These results suggest that at least in the Alaksa pea subhook region. GA does not stimulate cell elongation by affecting the level of auxin.  相似文献   

19.
Montague MJ  Ikuma H 《Plant physiology》1975,55(6):1043-1047
Gibberellic acid induces (a) increased elongation of Avena sativa stem segments, (b) increased formation of cell wall material, measured on the basis of dry weight, and (c) increased incorporation of 14C-glucose into all fractions of the cell wall material. This increased incorporation of radioactivity correlates well with increased formation of cell wall material and shows a time-course pattern similar to the time course of the elongation response. Approximately one hour after the application of gibberellic acid, the rates both of growth and of incorporation of radioactivity accelerate to about 2-fold over the control rate. Gibberellic acid does not stimulate the incorporation of labeled glucose into the cell wall material simply by increasing the rate of uptake of glucose by internodal cells. The stimulation of the incorporation of 14C-glucose into cell wall material, which reflects the stimulation of cell wall synthesis, seems to be an important and relatively early effect of gibberellic acid in this system and probably contributes significantly to the elongation response elicited by the hormone.  相似文献   

20.
The proteins removed from the extracellular space of dark-grown pea ( Pisum sativum L. cv. Alaska) internode sections by centrifugation were studied. A large number of proteins were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These proteins ranged in size from 10 to 150 kdalton and their removal from the cell wall was greatly facilitated by the presence of salts of divalent and trivalent cations in the infiltration medium. Pulse-labelling experiments with [35S)-methionine showed that many of the proteins extracted from the cell wall incorporated radioactivity and that treatment with indoleacetic acid (IAA) altered the pattern of radiolabel incorporation. One of the proteins centrifuged from pea internode sections possessed per-oxidase (EC 1.11.1.7) activity. The activity of this peroxidase increased less in auxin-treated internode segments than in untreated controls. Antibodies were raised to the total protein fraction extracted by centrifugation and used to localize antigens on protein blots. Most of the proteins centrifuged from pea internode sections were stained by a dye coupled to the cell wall antiserum. Light microscopic immunohistochemical studies showed that the proteins centrifuged from dark-grown pea internodes were localized almost exclusively in the cell wall and intercellular spaces of pea internode tissue. Light microscopic immunohistochemistry also showed that antibodies to extracted proteins penetrate into the apoplast of abraded pea internode segments and split pea stems. These antibodies did not influence growth of IAA-treated or control tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号