首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
NMR measurements of in vivo myocardial glycogen metabolism   总被引:6,自引:0,他引:6  
Using 13C and 1H NMR we measured the rate of glycogen synthesis (0.23 +/- 0.10 mumol/min gram wet weight tissue (gww) in rat heart in vivo during an intravenous infusion of D-[1-13C]glucose and insulin. Glycogen was observed within 10 min of starting and increased linearly throughout a 50-min infusion. This compared closely with the average activity of glycogen synthase I (0.22 +/- 0.03 mumol/min gww) measured at physiologic concentrations of UDP-glucose (92 microM) and glucose-6-phosphate (110 microM). When unlabeled glycogen replaced D-[1-13C]glucose in the infusate after 50 min the D-[1-13C]glycogen signal remained stable for another 60 min, indicating that no turnover of the newly synthesized glycogen had occurred. Despite this phosphorylase a activity in heart extracts from rats given a 1 h glucose and insulin infusion (3.8 +/- 2.4 mumol/min gww) greatly exceeded the total synthase activity and if active in vivo should promote glycogenolysis. We conclude that during glucose and insulin infusion in the rat: (a) the absolute rate of myocardial glycogen synthesis can be measured in vivo by NMR; (b) glycogen synthase I can account for the observed rates of heart glycogen synthesis; (c) there is no futile cycling of glucose in and out of heart glycogen; and (d) the activity of phosphorylase a measured in tissue extracts is not reflected in vivo. These studies raise the question whether significant regulation of phosphorylase a activity in vivo is mediated by factors in addition to its phosphorylation state.  相似文献   

2.
The glycogen content of muscle was correlated with the activity of glycogen synthase and glycogen phosphorylase from the parasitic roundworm Ascaris suum maintained in vitro. Adult female worms were maintained in the laboratory in a perfusion system during periods of starvation and feeding. During starvation, the levels of glucogen decreased at a rate of 0.1 to 0.2 mumoles/min/g wet weight of muscle-cuticle. During this time, 95% of the glycogen synthase (E.C. 2.4.1.11) was in the active D-form, and 48% of the phosphorylase (E.C. 2.4.1.1) was in the active a-form. Upon feeding, the rate of incorporation of glycosyl residues into glycogen proceeded at a rate of 0.75 to 1.0 mumoles/min/g muscle-cuticle. Glycogen synthase was 22% in the active I-form and phosphorylase a-levels remained virtually unchanged at 41% as compared with the starved worm. Total levels of both enzymes remained constant over the starvation-feeding period with 3.9 units/g phosphorylase and 0.4 units/g glycogen synthase. The apparent Km value for the substrate UDPG for glycogen synthase was 0.22 +/- 0.02 mM. For glycogen phosphorylase the Km value for G-1-P was 1.76 +/- 0.38 mM.  相似文献   

3.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

4.
The effects of daily oxytetracycline treatment on the activities of hepatic glycogen synthase, glycogen phosphorylase, plasma glucose, and insulin, and on liver glycogen, free fatty acid, and triglyceride levels were examined in 8- to 15-week-old genetically diabetic and lean mice. Oxytetracycline administration resulted in substantial reductions in the plasma glucose and immunoreactive-insulin levels in both diabetic and lean mice. The drug had no significant effect on the liver glycogen content in either phenotype, regardless of age, but it increased hepatic lipids and depressed body weights in lean animals. The most prominent effect of the drug was in markedly altering the activities of both glycogen synthase and phosphorylase in the liver of older diabetic mice. Oxytetracycline treatment produced a three-fold increase in the percentage of glycogen synthase I activity and reduced by one-third the percentage of glycogen phosphorylase a activity in 15-week-old diabetic mice. In age-matched lean mice treated with oxytetracycline, the percentage of glycogen synthase I activity increased significantly, but the percentage of phosphorylase a activity was unchanged. These data suggest that the drug may alter an aspect of hepatic glycogen metabolism which might lead to an inhibition of glycogenolysis and subsequent diminution of blood sugar levels in the diabetic. The present results show that, while oxytetracycline may be effective in reducing the severity of some of the diabetic symptoms associated with carbohydrate metabolism in this animal model of maturity-onset diabetes, the drug may have adverse effects on aspects of protein and lipid metabolism in these animals.  相似文献   

5.
1. Starvation of rats for 40 hr decreased the body weight, liver weight and blood glucose concentration. The hepatic and skeletal muscle glycogen concentrations were decreased by 95% (from 410 mumol/g tissue to 16 mumol/g tissue) and 55% (from 40 mumol/g tissue to 18.5 mumol/g tissue), respectively. 2. Fine structural analysis of glycogen purified from the liver and skeletal muscle of starved rats suggested that the glycogenolysis included a lysosomal component, in addition to the conventional phosphorolytic pathway. In support of this the hepatic acid alpha-glucosidase activity increased 1.8-fold following starvation. 3. Refeeding resulted in liver glycogen synthesis at a linear rate of 40 mumol/g tissue per hr over the first 13 hr of refeeding. The hepatic glycogen store were replenished by 8 hr of refeeding, but synthesis continued and the hepatic glycogen content peaked at 24 hr (approximately 670 mumol/g tissue). 4. Refeeding resulted in skeletal muscle glycogen synthesis at an initial rate of 40 mumol/g tissue per hr. The muscle glycogen store was replenished by 30 min of refeeding, but synthesis continued and the glycogen content peaked at 13 hr (approximately 50 mumol/g tissue). 5. Both liver and skeletal muscle glycogen synthesis were inhomogeneous with respect to molecular size; high molecular weight glycogen was initially synthesised at a faster rate than low molecular weight glycogen. These observations support suggestions that there is more than a single site of glycogen synthesis.  相似文献   

6.
Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway.  相似文献   

7.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

8.
The effects of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) were investigated on preparations of glycogen phosphorylase (GP) and in C57BL6J (ob/ob) mice by (13)C NMR in vivo. Independent of the phosphorylation state or the mammalian species or tissue from which GP was derived, DAB inhibited GP with K(i)-values of approximately 400 nM. The mode of inhibition was uncompetitive or noncompetitive, with respect to glycogen and P(i), respectively. The effects of glucose and caffeine on the inhibitory effect of DAB were investigated. Taken together, these data suggest that DAB defines a novel mechanism of action. Intraperitoneal treatment with DAB (a total of 105 mg/kg in seven doses) for 210 min inhibited glucagon-stimulated glycogenolysis in obese and lean mice. Thus, liver glycogen levels were 361 +/- 19 and 228 +/- 19 micromol glucosyl units/g with DAB plus glucagon in lean and obese mice, respectively, compared to 115 +/- 24 and 37 +/- 8 micromol glucosyl units/g liver with glucagon only. Moreover, with glucagon only end-point blood glucose levels were at 29 +/- 2 and 17.5 +/- 2 mM in obese and lean mice, respectively, compared to 17.5 +/- 1 and 12 +/- 1 mM with glucagon plus DAB. In conclusion, DAB is a novel and potent inhibitor of GP with an apparently distinct mechanism of action. Further, DAB inhibited the hepatic glycogen breakdown in vivo and displayed an accompanying anti-hyperglycemic effect, which was most pronounced in obese mice. The data suggest that inhibition of GP may offer a therapeutic principle in Type 2 diabetes.  相似文献   

9.
The cyclic AMP and glycogen concentrations and the activities of phosphorylase kinase, phosphorylase a and glycogen synthase a were not different in livers from lean or ob/ob mice despite increased plasma glucose and insulin in the obese group. The liver water content was decreased by 10% in the obese mice. In hepatocytes isolated from lean mice and incubated with increasing glucose concentrations (14-112 mM), a sequential inactivation of phosphorylase and activation of glycogen synthase was observed. In hepatocytes from obese mice the inactivation of phosphorylase was not followed by an activation of synthase. The inactivation of phosphorylase occurred more rapidly and was followed by an activation of synthase in hepatocytes isolated from both groups of mice when in the incubation medium Na+ was replaced by K+ or when Ca2+ was omitted and 2.5 mM-EGTA included. The inactivation of phosphorylase and activation of synthase were not different in broken-liver-cell preparations from lean and obese animals. The re-activation of phosphorylase in liver filtrates in the presence of 0.1 microM-cyclic AMP and MgATP was inhibited by about 70% by EGTA and stimulated by Ca2+ and was always greater in preparations from ob/ob mice. The apparent paradox between the impairment of glycogen metabolism in isolated liver preparations and the situation in vivo in obese mice is discussed.  相似文献   

10.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

11.
Skeletal muscle glycogen content and structure, and the activities of several enzymes of glycogen metabolism are reported for the hepatic glycogen phosphorylase b kinase deficient (gsd/gsd) rat. The skeletal muscle glycogen content of the fed gsd/gsd rat is 0.50 +/- 0.11% tissue wet weight, and after 40 hours of starvation this value is lowered 40% to 0.30 +/- 0.05% tissue wet weight. In contrast the gsd/gsd rat liver has an elevated glycogen content which remains high after starvation. The skeletal muscle phosphorylase b kinase, glycogen phosphorylase, glycogen synthase and acid alpha-glucosidase activities are 17.2 +/- 2.9 units/g tissue, 119.9 +/- 6.4 units/g tissue, 12.2 +/- 0.4 units/g tissue and 1.4 +/- 0.4 milliunits/g tissue, respectively, with approx. 20% of phosphorylase and approx. 24% of synthase in the active form (at rest). These enzyme activities resemble those of Wistar skeletal muscle, and again this contrasts with the situation in the liver where there are marked differences between the Wistar and the gsd/gsd rat. Fine structural analysis of the purified glycogen showed resemblance to other glycogens in branching pattern. Analysis of the molecular weight distribution of the purified glycogen indicated polydispersity with approx. 66% of the glycogen having a molecular weight of less than 250 X 10(6) daltons and approx. 25% greater than 500 X 10(6) daltons. This molecular weight distribution resembles those of purified Wistar liver and skeletal muscle glycogens and differs from that of the gsd/gsd liver glycogen which has an increased proportion of the low molecular weight material.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Hepatic mitochondrial and peroxisomal oxidative capacities were studied in young (4-5 weeks old) and adult (6-9 months old) lean and obese ob/ob mice that were fed or starved for 24 or 48 h. The adult obese mice showed elevated capacity for mitochondrial oxidation (ng-atoms of O consumed/min per mg of protein) of lipid and non-lipid substrates, with the exception of pyruvate + malate, and elevated activities of citrate synthase and total carnitine palmitoyltransferase. Oxidative rates and enzyme activities were not affected by starvation of lean or obese mice, and both males and females responded similarly. Peroxisomal palmitoyl-CoA oxidation (nmol/min per mg of peroxisomal protein) was also increased in livers of adult obese mice and did not change with starvation. In young mice, hepatic mitochondrial and peroxisomal oxidative capacities in lean and obese mice were comparable. The increased mitochondrial and peroxisomal oxidative capacities appear to develop with maturation in obese ob/ob mice.  相似文献   

13.
The effects of food deprivation on body weight, liver weight, hepatic glycogen content, glycogenolytic enzymes and blood metabolites were compared in young and old phosphorylase b kinase-deficient (gsd/gsd) rats. Although the concentration of glycogen in liver from 9-week-old female gsd/gsd rats (730 mumol of glucose equivalents/g wet wt.) was increased by 7-8% during starvation, total hepatic glycogen was decreased by 12% after 24 h without food. In 12-month-old male gsd/gsd rats the concentration of liver glycogen (585 mumol of glucose equiv./g wet wt.) was decreased by 16% and total hepatic glycogen by nearly 40% after food deprivation for 24 h. Phosphorylase b kinase and phosphorylase a were present at approx. 10% of the control activities in 9-week-old gsd/gsd rats, but both enzyme activities were increased more than 3-fold in 12-month-old affected rodents. It is concluded that the age-related ability to mobilize hepatic glycogen appears to result from the augmentation of phosphorylase b kinase during maturation of the gsd/gsd rat.  相似文献   

14.
A new perfusion system has been developed in which muscle-cuticle sections of Ascaris suum were perfused, enabling study of enzymes in vitro. Using this technique the activity of the regulatory enzymes glycogen synthase and glycogen phosphorylase was determined, and the level of glycogen in the muscle was assessed. During starvation, 98% of glycogen synthase was in the inactive D-form, and 80% of the glycogen phosphorylase activity was in the active a-form. When the ascarid muscle section was perfused with 27 mM glucose, 13.1% of the glycogen synthase was in the active I-form, whereas phosphorylase a-levels dropped to 46% and glycogen was synthesized at a linear rate of 12 mg/g/hr or 1.23 mumoles/min/g muscle-cuticle. ATP levels (3.71 +/- 0.32 mM) remained unchanged over a 4-hr perfusion period with an adenylate energy charge of 0.82. Fructose supported glycogen synthesis, though not as well as glucose. Galactose, mannose, and trehalose did not support glycogen synthesis. The new perfusion system should be useful in future, similar studies on Ascaris.  相似文献   

15.
The effects of 3 or 6 days of starvation on hepatic peroxisomal palmitoyl-CoA oxidation were examined in adult lean and obese Zucker rats. When expressed either per mg of DNA or per total liver, obese rats had almost 2-fold higher oxidation rates than the lean rats. Within 6 days of starvation rates fell by 50% among both phenotypes. When data were expressed per 100 g body wt., lean and obese rats had similar rates, falling from a mean of 0.57 to 0.28 mumol/min per 100 g body wt. within 6 days of starvation. Peroxisomal oxidative changes paralleled mitochondrial beta-oxidative changes.  相似文献   

16.
Leg muscle was biopsied and frozen for storage at -70 degrees C. from 5 wild-type mice, two knocked out acid alpha-glucosidase (GAA) gene mice, and seven glycogen synthase plus glucose muscle transporter transgenic mice. All of the wild-type mice had very little muscle glycogen (3.58 +/- 1.67 micromols glucosyl subunits per g muscle), and 52% or more of its glycogen phosphorylase activity without AMP (69% +/- 17% glycogen phosphorylase a). In contrast the GAA knockout and transgenic mice had glycogen ranging from 63 to 297 micromols glucosyl subunits per g muscle, and very little or no glycogen phosphorylase activity without 1.00 mM AMP (4.8% and less glycogen phosphorylase a). This suggests that there is an inverse relationship between mouse muscle phosphorylase a and the muscle's glycogen content.  相似文献   

17.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

18.
We evaluated abdominal adipose tissue leptin production during short-term fasting in nine lean [body mass index (BMI) 21 +/- 1 kg/m(2)] and nine upper body obese (BMI 36 +/- 1 kg/m(2)) women. Leptin kinetics were determined by arteriovenous balance across abdominal subcutaneous adipose tissue at 14 and 22 h of fasting. At 14 h of fasting, net leptin release from abdominal adipose tissue in obese subjects (10.9 +/- 1.9 ng x 100 g tissue x (-1) x min(-1)) was not significantly greater than the values observed in the lean group (7.6 +/- 2.1 ng x 100 g(-1) x min(-1)). Estimated whole body leptin production was approximately fivefold greater in obese (6.97 +/- 1.18 microg/min) than lean subjects (1.25 +/- 0.28 microg/min) (P < 0.005). At 22 h of fasting, leptin production rates decreased in both lean and obese groups (to 3.10 +/- 1.31 and 10.5 +/- 2.3 ng x 100 g adipose tissue(-1) x min(-1), respectively). However, the relative declines in both arterial leptin concentration and local leptin production in obese women (arterial concentration 13.8 +/- 4.4%, local production 10.0 +/- 12.3%) were less (P < 0.05 for both) than the relative decline in lean women (arterial concentration 39.0 +/- 5.5%, local production 56.9 +/- 13.0%). This study demonstrates that decreased leptin production accounts for the decline in plasma leptin concentration observed after fasting. However, compared with lean women, the fasting-induced decline in leptin production is blunted in women with upper body obesity. Differences in leptin production during fasting may be responsible for differences in the neuroendocrine response to fasting previously observed in lean and obese women.  相似文献   

19.
The influences of host feeding and the availability of glucose in vitro on the activities of glycogen synthase and glycogen phosphorylase in Hymenolepis diminuta and in Vampirolepis microstoma were studied. The worms were recovered from hosts that had been fed ad libitum, starved for 24 hr, or starved 24 hr and then refed for 1 hr immediately prior to worm recovery. The ratios of active to inactive glycogen synthase and phosphorylase were correlated with the host feeding regimen prior to recovery. Glycogen synthase in H. diminuta was predominately in the inactive D form in worms from both fed and fasted hosts. One hour after refeeding, up to 80% of the synthase was in the active I form. Phosphorylase in H. diminuta was predominantly in the active a form in worms from fed and fasted hosts, but activity of this enzyme was suppressed in worms from refed hosts. When H. diminuta from fasted hosts was incubated in a balanced salt solution containing 40 mM glucose, glycogen synthase I increased, and phosphorylase a decreased. Glycogen synthase in V. microstoma was predominantly in the inactive D form in worms from both the fed and fasted hosts, but the proportion in the active I form increased to over half the total synthase by 1 hr of host refeeding. The proportion of glycogen phosphorylase a was high in worms from fed hosts and decreased, but not dramatically, in worms from fasted hosts. The results suggested that the worms had access to another source of glucose, probably from the host bile, and we measured a low but significant concentration of carbohydrate in the gall bladder bile of mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The regulation of glycogenolysis in human muscle during epinephrine infusion has been investigated. The content of cAMP in resting muscle was 2.7 +/- 0.7 (SD) mumol . kg dry muscle-1 and increased threefold during the first 5 min of infusion. Total glycogen phosphorylase and glycogen synthase activities were unchanged during the infusion. The proportion of phosphorylase in the a form in the basal state was estimated to be at least 22.5% and during infusion 80-90%. During infusion, synthase I activity decreased. The muscle glycogen content was 340 mmol . kg dry wt-1 and decreased during the first 2 min of infusion at a rate of 11.0 mmol glycosyl units . kg dry wt-1 . min-1. Prolonged infusion resulted in a much lower glycogenolytic rate, even though most of the phosphorylase was still in the a form. Accumulation of hexose monophosphates and lactate followed the changes in glycogen. It was concluded that despite the almost total transformation of phosphorylase to the a form, the in vivo activity was maintained at a low level. It is suggested that this may be due to a low concentration of inorganic phosphate at the active site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号