首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The main purpose of this study was to develop an inexpensive, simple, rapid and sensitive chemiluminescence (CL) method for the determination of glutamine (Gln) using a flow‐injection (FI) system. Gln was found to strongly inhibit the CL signal of the luminol–H2O2–CuSO4 system in Na2B4O7 solution. A new FI‐CL method was developed for the determination of Gln. Parameters affecting the reproducibility and CL detection were optimized systematically. Under the optimized conditions, the corresponding linear regression equation was established over the range of 5.0 × 10?7 to 2.5 × 10?6 mol/L with the detection limit of 1.8 × 10?8 mol/L. The relative standard deviation was found to be 1.8% for 11 replicate determinations of 1.5 × 10?6 mol/L Gln. The proposed method has been satisfactorily applied for the determination of Gln in real samples (Marzulene‐s granules) with recoveries in the range of 98.7–108.6%. The minimum sampling rate was about 100 samples/h. The possible mechanism of this inhibitory CL was studied by fluorescence spectrophotometer and UV–vis spectrophotometer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This method is based on the enhancing effect of codeine (COD) and paracetamol (PAR) on the chemiluminescence (CL) reaction of Ru(phen)32+ with Ce(IV). In the batch mode, COD gives a relatively sharp peak with the highest CL intensity at 4.0 s, whereas the maximum CL intensity of the PAR appears at ~60 s after injection of Ce(IV) solution. Whole CL time profiles allowed use of the time‐resolved CL data in combination with multiway calibration techniques, as multiway partial least squares (N‐PLS), for the quantitative determination of both COD and PAR in binary mixtures. In this work, we found that the impact of Ce(IV) concentration on the CL intensity was different for COD and PAR. Therefore, a Ce(IV) concentration mode was added to the time and sample modes to obtain 3D data. The percent relative standard deviation (%RSD) values for 10 determinations of 1.0 × 10?5 mol/L of COD and 1.0 × 10?4 mol/L of PAR were 6.1% and 8.7%, respectively. The limit of detection (LOD) values (S/N = 3) were 0.9 × 10?8 mol/L and 1.0 × 10?6 mol/L for COD and PAR, respectively. The proposed method was successfully applied to the determination of PAR and COD in commercial pharmaceutical formulations. Acceptable recoveries (90–110%) were obtained for the quantification of these drugs in the real samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A new chemiluminescence (CL) reaction between luminol and diperiodatoargentate {K2 [Ag (H2IO6) (OH) 2]} was observed in alkaline medium. The CL intensity could be greatly enhanced by amikacin sulfate. Therefore a new CL method for the determination of amikacin sulfate was built by combining with flow injection technology. A possible mechanism of the CL reaction was proposed via the investigation of the CL kinetic characteristics, the CL spectrum and the UV absorption spectra of some related substance. The concentration range of linear response was 5.1 × 10?8 to 5.1 × 10?6 mol L?1 with a detection limit of 1.9 × 10?8 mol L?1 (3σ). The proposed method had good reproducibility with a relative standard deviation of 2.8% (n = 7) for 5.1 × 10?7 mol L?1 of amikacin sulfate. It was successfully applied to determine amikacin sulfate in serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and sensitive flow injection chemiluminescence (FI‐CL) method was developed for the determination of naphazoline hydrochloride (NPZ). The method is based on the enhancing effect of NPZ on the weak CL signal from the reaction of KIO4 with H2O2. Experimental parameters that affected the CL signal, including the pH of the KIO4 solution, concentrations of KIO4, H2O2 and disodium‐EDTA and flow rate were optimized. Under the optimum conditions, the increment of CL intensity was linearly proportional to the concentration of NPZ in the range 5.0 × 10?6 to 70 × 10?6 mol/L. The detection limit was 1.0 × 10?6 mol/L and the relative standard deviation for 50 × 10?6 mol/L NPZ solution was 2.8% (n = 11). In addition, a high throughput of 120 samples/h was achieved. The utility of this method was demonstrated by determining NPZ in pharmaceuticals. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A novel, rapid and sensitive method was described for the determination of epinephrine (EP) using flow injection analysis coupled with chemiluminescence (CL) detection, which based on EP enhanced the weak CL emission of luminol–KIO4 system in NaOH solution. Parameters affecting the CL intensity and reproducibility were optimized systematically. Under the optimized experiment conditions, the net CL intensity was proportional to the concentration of EP in the range of 5.0 × 10?8 to 1.5 × 10?6 mol/L with a detection limit of 1.9 × 10?9 mol/L. The relative standard deviation (RSD) was found to be 0.7% for 13 replicate determinations of 3.0 × 10?7 mol/L EP. The applicability of the proposed method was illustrated in the determination of EP in pharmaceutical preparation. The recoveries of EP at different levels in EP hydrochloride injection were between 95.4 and 104.7%. One assay procedure takes only 27 s, and the sampling rate was calculated about to be 130 samples/h. The possible mechanism of the enhanced CL intensity was studied by examining CL spectra and UV–vis spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A post‐chemiluminescence (PCL) phenomenon was observed when chloramphenicol was injected into a mixture of luminol and potassium periodate after the chemiluminescence (CL) reaction of luminol–potassium periodate had finished. The possible reaction mechanism was proposed based on studies of the CL kinetic characteristics, the CL spectra, the fluorescence spectra and the UV‐vis absorption spectra of the related substances. Based on the PCL reaction, a rapid and sensitive method for the determination of chloramphenicol was established. The linear response range was 6.0 × 10?7–1.0 × 10?5 mol/L, with a correlation coefficient of 0.9986. The relative standard deviation (RSD) for 5.0 × 10?6 mol/L chloramphenicol was 2.3% (n = 11). The detection limit was 1.6 × 10?7 mol/L. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The water‐soluble luminescent CdSe quantum dots were prepared by ligand exchange with triethanolamine (TEA). Oxygen can reversibly enhance the fluorescence of the synthesized quantum dots (TEA‐CdSe‐QDs) in aqueous solution. Nitric oxide radical (NO) can react easily with dissolved oxygen in water and was found to have a significant quenching effect on the fluorescence of the TEA‐CdSe‐QDs. The fluorescence responses were concentration‐dependent and can be well described by the typical Stern–Volmer equation. A good linear relationship (R= 0.9963) was observed over the range 5.92 × 10?7 to 1.85 × 10?5 mol/L nitric oxide. Above this concentration was a second linear region ranging from 2.12 × 10?5 to 1.12 × 10?4 mol/L NO with a gentler slope. The detection limit, calculated following the 3σ IUPAC criteria, was 3.02 × 10?7 mol/L. The interference effect of some common interferents such as nitrite (NO2?), nitrate (NO3?), glucose and l ‐ascorbic acid on the detection of NO was negligible for the proposed system, demonstrating the potential utility of this probe for the detection of NO in biological systems. The possible mechanism was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A remarkable method for the highly sensitive detection of phenylalanine and tryptophan based on a chemiluminescence (CL) assay was reported. It was found that fluorescent copper nanoclusters capped with cysteine (Cys‐CuNCs) strongly enhance the weak CL signal resulting from the reaction between luminol and H2O2. Of the amino acids tested, phenylalanine and tryptophan could enhance the above CL system sensitively. Under optimum conditions, this method was satisfactorily described by a linear calibration curve over a range of 1.0 × 10?6 to 2.7 × 10?5 M for phenylalanine and 1.0 × 10?7 to 3.0 × 10?5 M for tryptophan, respectively. The effect of various parameters such as Cys‐CuNC concentration, H2O2 concentration and pH on the intensity of the CL system were also studied. The main experimental advantage of the proposed method was its selectivity for two amino acids compared with others. To evaluate the applicability of the method to the analysis of a real biological sample it was used to determine tryptophan and phenylalanine in human serum and remarkable results were obtained.  相似文献   

13.
Based on the catalytic activity of hemin, an efficient biocatalyst, an indirect capillary electrophoresis–chemiluminescence (CE‐CL) detection method for phenols using a hemin–luminol–hydrogen peroxide system was developed. Through a series of static injection experiments, hemin was found to perform best in a neutral solution rather than an acidic or alkaline medium. Although halide ions such as Br? and F? could further enhance the CL signal catalyzed by hemin, it is difficult to apply these conditions to this CE‐CL detection system because of the self‐polymerization of hemin, as it hinders the CE process. The addition of concentrated ammonium hydroxide to an aqueous/dimethyl sulfoxide solution of hemin–luminol afforded a stable CE‐CL baseline. The indirect CE‐CL detection of five phenols using this method gave the following limits of detections: 4.8 × 10?8 mol/L (o‐sec‐butylphenol), 4.9 × 10?8 mol/L (o‐cresol), 5.4 × 10?8 mol/L (m‐cresol), 5.3 × 10?8 mol/L (2,4‐dichlorophenol) and 7.1 × 10?8 mol/L (phenol). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A highly selective and simple chemiluminescence (CL) method for determination of penicillin G potassium (PGK) was developed. In the proposed method, CL was elicited from PGK upon its oxidation with H2O2. The light emission was enhanced in the presence of N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB). An experimental design, central composite design (CCD), was used to realize the optimized variables, including pH, surfactant (CTMAB) and H2O2 concentrations. Under optimum condition, the calibration graph was linear in the range 3.3 × 10?3–3.3 × 10?1 mmol/L, with a detection limit of 8.8 × 10?4 mmol/L for PGK. The precision was calculated by analysing samples containing 1.6 × 10?1 mmol/L PGK (n = 5) and the relative standard deviation (RSD) was 1.40%. The utility of this method was demonstrated by determining PGK in pharmaceutical formulations for injection. The proposed method was validated by a reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe3O4@Au nanoparticles modified with 6‐mercapto‐beta‐cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N ,N ′‐methylenebisacrylamide as a cross‐linking agent. Cinchonine was specifically recognized by the 6‐mercapto‐beta‐cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy)32+. Cinchonine concentrations of 1 × 10?10 to 4 × 10?7 mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10?11 mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%.  相似文献   

16.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Colloidals solution of Fe3O4 magnetic nanoparticles (MNPs), capped with β‐cyclodextrins (β‐CD) as inclusion complexes, were found to enhance the chemiluminescence (CL) intensity of the luminol–diperiodatoargentate(III) (DPA) system. On injection of cysteine into the luminol–DPA–β‐CD–Fe3O4 MNPs inclusion complexes system, the CL intensity is strongly enhanced. The enhanced CL signal is ascribed to the catalytic effect of Fe3O4 MNPs capped with β‐CD, which is assumed to stabilize the CL intermediate. Based on these findings, a rapid and sensitive assay was developed for the determination of cysteine in human serum. The effects of analytical variables on the CL signal were studied and optimized. Under the optimum conditions, the CL intensity was directly proportional to the concentration of cysteine in the range 8.0 × 10–9–1.0 × 10–6 mol/L. The detection limit was 2.8 × 10–9 mol/L (3 Sb/m) and the relative standard deviation (RSD) for 10 replicate determinations of 1.0 × 10–7 mol/L cysteine was 3.5%. The proposed method was applied to the sensitive determination of cysteine in human serum samples, and compared with the Ellman method with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A novel chemiluminescence (CL) system, including the cyclometallated iridium(III) complex {tris[1‐(2,6‐dimethylphenoxy)‐4‐(4‐chlorophenyl)phthalazine]iridium}, potassium permanganate and oxalic acid, is proposed for the determination of benzenediols. This method is based on the fact that hydroquinone and catechol exhibited an inhibiting effect, while resorcinol exhibited an enhancing effect on CL intensity. The optimum conditions for CL emission were investigated. Under optimal conditions, the detection limits of hydroquinone, catechol and resorcinol were 6.4 × 10?8, 2.7 × 10?9 and 8.1 × 10?7 mol/L, respectively. The method has been successfully applied to the determination of benzenediols in different types of water sample. The luminophors of the CL systems were all identified as the metal–ligand charge‐transfer (MLCT) excited state of the iridium complex. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, sensitive cupric oxide nanoparticles (CuO NPs) enhanced chemiluminescence (CL) method was developed for the measurement of β‐lactam antibiotics, including amoxicillin and cefazolin sodium. The method was based on suppression of the CuO NPs–luminol–H2O2 CL reaction by β‐lactam antibiotics. Experimental parameters that influenced the inhibitory effect of the antibiotic drugs on the CL system, such as NaOH (mol/L), luminol (µmol/L), H2O2 (mol/L) and CuO NPs (mg/L) concentrations, were optimized. Calibration graphs were linear and had dynamic ranges of 1.0 × 10–6 to 8.0 × 10–6 mol/L and 3.0 × 10–5 to 5.0 × 10–3 mol/L for amoxicillin and cefazolin sodium, respectively, with corresponding detection limits of 7.9 × 10–7 mol/L and 1.8 × 10–5 mol/L. The relative standard deviations of five replicate measurements of 5.0 × 10–6 amoxicillin and 5 × 10–4 cefazolin sodium were 5.43 and 5.01%, respectively. The synthesized CuO NPs were characterized by X‐ray diffraction (XRD) and transmission electronmicroscopy (TEM). The developed approach was exploited successfully to measure antibiotics in pharmaceutical preparations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号