首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanism of phosphate accumulation, a gene encoding polyphosphate kinase (PPK) was cloned from the genomic library of Serratia marcescens by Southern hybridization. From the nucleotide sequence of a 4 kb DNA fragment, an open reading frame of 2063 nucleotides was identified encoding a protein of 686 amino acids with molecular mass of 70 kDa. The potential CRP binding site and pho box sequence were found upstream of the putative promoter in the regulatory region. The expression of PPK resulted in the formation of inclusion bodies and the product was active at low temperature. The E. coli strain harboring plasmid pSPK5 with ppk gene increased enzyme activity of polyphosphate kinase, resulting in increased accumulation of polyphosphate in E. coli.  相似文献   

2.
In this review, we discuss the following two subjects: 1) the physiological function of polyphosphate (poly(P)) as a regulatory factor for gene expression in Escherichia coli, and 2) novel functions of E. coli polyphosphate kinase (PPK) and their applications. With regard to the first subject, it has been shown that E. coli cells in which yeast exopolyphosphatase (poly(P)ase), PPX1, was overproduced reduced resistance to H2O2 and heat shock as did a mutant whose polyphosphate kinase gene is disrupted. Sensitivity to H2O2 and heat shock evinced by cells that overproduce PPX1 is attributed to depressed levels of rpoS expression. Since rpoS is a central element in a regulatory network that governs the expression of stationary-phase-induced genes, poly(P) affects the expression of many genes through controlling rpoS expression. Furthermore, poly(P) is also involved in expression of other stress-inducible genes that are not directly regulated by rpoS. The second subject includes the application of novel functions of PPK for nucleoside triphosphate (NTP) regeneration. Recently E. coli PPK has been found to catalyze the kination of not only ADP but also other nucleoside diphosphates using poly(P) as a phospho-donor, yielding NTPs. This nucleoside diphosphate kinase-like activity of PPK was confirmed to be available for NTP regeneration essential for enzymatic oligosaccharide synthesis using the sugar nucleotide cycling method. PPK has also been found to express a poly(P):AMP phosphotransferase activity by coupling with adenylate kinase (ADK) in E. coli. The ATP-regeneration system consisting of ADK, PPK, and poly(P) was shown to be promising for practical utilization of poly(P) as ATP substitute.  相似文献   

3.

Background  

Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood.  相似文献   

4.
Inorganic polyphosphate (polyP) is present in all living forms of life. Studied mainly in prokaryotes, polyP and its associated enzymes are vital in diverse metabolic activities, in some structural functions, and most importantly in stress responses. Bacterial species, including many pathogens, encode a homolog of a major polyP synthesis enzyme, Poly Phosphate Kinase (PPK) with 2 different genes coding for PPK1 and PPK2. Genetic deletion of the ppk1 gene leads to reduced polyP levels and the consequent loss of virulence and stress adaptation responses. This far, no PPK1 homolog has been identified in higher‐order eukaryotes, and, therefore, PPK1 represents a novel target for chemotherapy. The aim of the current study is to investigate PPK1 from Escherichia coli with comprehensive understanding of the enzyme's structure and binding sites, which were used to design pharmacophores and screen a library of compounds for potential discovery of selective PPK1 inhibitors. Verification of the resultant inhibitors activities was conducted using a combination of mutagenic and chemical biological approaches. The metabolic phenotypic maps of the wild type E. coli (WT) and ppk1 knockout mutant were generated and compared with the metabolic map of the chemically inhibited WT. In addition, biofilm formation ability was measured in WT, ppk1 knockout mutant, and the chemically inhibited WT. The results demonstrated that chemical inhibition of PPK1, with the designed inhibitors, was equivalent to gene deletion in altering specific metabolic pathways, changing the metabolic fingerprint, and suppressing the ability of E. coli to form a biofilm.  相似文献   

5.
Polyphosphate is ubiquitous among living organisms and has a variety of biochemical functions. Arbuscular mycorrhizal fungi have been known to accumulate polyphosphate as a key compound for their function. However, an enzymatic assay using polyphosphate kinase (PPK) reverse reaction, in which polyphosphate is converted to adenosine triphosphate (ATP) and quantified by luciferase assay, failed to detect accumulation of polyphosphate in some mycorrhizal root. When yeast exopolyphosphatase (PPX) was applied to these samples, a much higher polyphosphate level was detected than when the PPK assay was applied. Detailed analysis of substrate chain length specificity of these methods using polyphosphate chain length standards revealed that the PPX method was the most appropriate to detect short-chain polyphosphate. The average chain length of the shortest polyphosphate fraction that could be quantified with more than 50% efficiency was 3 for the PPX method and 38 for the PPK method. It was also suggested that the ratio of the PPK value to the PPX value may be useful as a simple and relative index to compare polyphosphate chain length distribution in different samples.  相似文献   

6.
Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains I and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the "closed" state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an "open" state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.  相似文献   

7.
8.

Background

In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK).

Principal Findings

Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true.

Conclusions/Significance

We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only.  相似文献   

9.
Vibrio cholerae O1, biotype El Tor, accumulates inorganic polyphosphate (poly P) principally as large clusters of granules. Poly P kinase (PPK), the enzyme that synthesizes poly P from ATP, is encoded by the ppk gene, which has been cloned from V. cholerae, overexpressed, and knocked out by insertion-deletion mutagenesis. The predicted amino acid sequence of PPK is 701 residues (81.6 kDa), with 64% identity to that of Escherichia coli, which it resembles biochemically. As in E. coli, ppk is part of an operon with ppx, the gene that encodes exopolyphosphatase (PPX). However, unlike in E. coli, PPX activity was not detected in cell extracts of wild-type V. cholerae. The ppk null mutant of V. cholerae has diminished adaptation to high concentrations of calcium in the medium as well as motility and abiotic surface attachment.  相似文献   

10.
Polyphosphate kinases (PPKs) catalyse the polymerisation and degradation of polyphosphate chains. As a result of this process, PPK produces or consumes energy in the form of ATP. Polyphosphate is a linear molecule that contains tens to hundreds of phosphate residues connected by macroergic bonds, and it appears to be an easily obtainable and rich source of energy from prebiotic times to the present. Notably, polyphosphate is present in the cells of all three domains of life, but PPKs are widely distributed only in Bacteria, as Archaea and Eucarya use various unrelated or “nonhomologous” proteins for energy and metabolic balance. The present study focuses on PPK1 and PPK2 homologues, which have been described to some extent in Bacteria, and the aim was to determine which homologue group, PPK1 or PPK2, is older. Phylogenetic analyses of 109 sequence homologues of Escherichia coli PPK1 and 109 sequence homologues of Pseudomonas aeruginosa PPK2 from 109 bacterial genomes imply that polyphosphate consumption (PPK2) evolved first and that phosphate polymerisation (PPK1) evolved later. Independently, a theory of the trends in amino acid loss and gain also confirms that PPK2 is older than PPK1. According to the results of this study, we propose 68 hypothetical proteins to mark as PPK2 homologues and 3 hypothetical proteins to mark as PPK1 homologues.  相似文献   

11.
Nucleoside triphosphates, important intermediates in oligosaccharide synthesis by glycosyltransferases, were generated from nucleoside monophosphates by E. coli BL21(DE3) which over-expresses polyphosphate kinase (PPK) or by Corynebacterium ammoniagenes ATCC 21264 using 1% (w/v) polyphosphate as a phosphate donor and a source of energy. Beads of calcium pectate gel were stable in polyphosphate reaction broth for 60 days after which the activity of PPK was 50% of its original value. This technique could be used for the large-scale synthesis of oligosaccharides.  相似文献   

12.
Corynebacterium glutamicum is able to accumulate up to 600 mM cytosolic phosphorus in the form of polyphosphate (poly P). Granular poly P (volutin) can make up to 37% of the internal cell volume. This bacterium lacks the classic enzyme of poly P synthesis, class I polyphosphate kinase (PPK1), but it possesses two genes, ppk2A (corresponds to NCgl0880) and ppk2B (corresponds to NCgl2620), for putative class II (PPK2) PPKs. Deletion of ppk2B decreased PPK activity and cellular poly P content, while overexpression of ppk2B increased both PPK activity and cellular poly P content. Neither deletion nor overexpression of ppk2A changed specific activity of PPK or cellular poly P content significantly. Purified PPK2B of C. glutamicum is active as a homotetramer and formed poly P with an average chain length of about 125, as determined with (31)P nuclear magnetic resonance. The catalytic efficiency of C. glutamicum PPK2B was higher in the poly P-forming direction than for nucleoside triphosphate formation from poly P. The ppk2B deletion mutant, which accumulated very little poly P and grew as C. glutamicum wild type under phosphate-sufficient conditions, showed a growth defect under phosphate-limiting conditions.  相似文献   

13.
Catalytic properties of Escherichia coli polyphosphate kinase (EC 2.7.4.1), a promising enzyme for use in ATP regeneration (Hoffman, et al., 1988, Biotechnol. Appl. Biochem. 10, 107-117), are reported here. E. coli polyphosphate kinase (PPK) is broadly active in the pH range 5.5 to 8.5, having an optimal Vmax at pH 7.2. The Km values for the substrates, ADP and polyphosphate (Pn), change little in the same pH range. The optimal concentration range for the Mg2+ activator is 1-20 mM, with an activity maximum at 10 mM Mg2+. In addition to Mg2+, Mn2+ and Co2+ can serve as activators of E. coli PPK, whereas Zn2+ and Cu2+ are highly inhibitory. E. coli PPK is most active with Pn substrates of chain length greater than 132 phosphoryl units. The enzyme activity decreases with decreasing Pn chain length and approaches zero (less than 1%) at a chain length less than or equal to 5. Equilibrium yields of ATP of greater than 85% are readily attained at substrate concentrations below 1 mM. An operational equilibrium constant for the PPK reaction, defined as [ATP]/[ADP][Pn], was determined to be 7.5 (+/- 3.4) x 10(5) M-1. The data presented here serve as a base of information from which assessments of the suitability of E. coli PPK for specific ATP regeneration applications can be made.  相似文献   

14.
Partially purified endopolyphosphatase from cytosol of the yeast Saccharomyces cerevisiae with inactivated genes PPX1 and PPN1 encoding exopolyphosphatases was obtained with ion_exchange and affinity chromatography. The enzyme activity was estimated by decrease of polyphosphate chain length determined by PAGE. The enzyme cleaved inorganic polyphosphate without the release of orthophosphate (Pi) and was inhibited by heparin and insensitive to fluoride. Mg2+, Mn2+, and Co2+ (1.5 mM) stimulated the activity, and Ca2+ was ineffective. The molecular mass of the endopolyphosphatase determined by gel filtration was of ≈20 kDa.  相似文献   

15.
The genes involved in polyphosphate metabolism in Escherichia coli were cloned behind different inducible promoters on separate plasmids. The gene coding for polyphosphate kinase (PPK), the enzyme responsible for polyphosphate synthesis, was placed behind the Ptac promoter. Polyphosphatase, a polyphosphate depolymerase, was similarly expressed by using the arabinose-inducible PBAD promoter. The ability of cells containing these constructs to produce active enzymes only when induced was confirmed by polyphosphate extraction, enzyme assays, and RNA analysis. The inducer concentrations giving optimal expression of each enzyme were determined. Experiments were performed in which ppk was induced early in growth, overproducing PPK and allowing large amounts of polyphosphate to accumulate (80 mumol in phosphate monomer units per g of dry cell weight). The ppx gene was subsequently induced, and polyphosphate was degraded to inorganic phosphate. Approximately half of this polyphosphate was depleted in 210 min. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells and was secreted into the medium, leading to a down-regulation of the phosphate-starvation response. In addition, the steady-state polyphosphate level was precisely controlled by manipulating the degree of ppx induction. The polyphosphate content varied from 98 to 12 mumol in phosphate monomer units per g of dry cell weight as the arabinose concentration was increased from 0 to 0.02% by weight.  相似文献   

16.
Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.  相似文献   

17.
Polyphosphate is ubiquitous and has a variety of biochemical functions. Among polyphosphate quantification methods, an enzymatic assay using Escherichia coli polyphosphate kinase (PPK), in which polyphosphate is converted to adenosine 5'-triphosphate and quantified by luciferase assay, is the most specific and most sensitive. However, chain-length specificity of the assay has not been analyzed in detail so far. Ion chromatography equipped with an on-line hydroxide eluent generator enabled us to analyze polyphosphate up to 50 inorganic phosphate (P(i)) residues, and we employed this method to investigate the chain-length specificity of PPK in this study. Several fractions of short-chain polyphosphate were prepared by electrophoresis, and the chain-length distribution was analyzed before and after 1-6 h PPK reaction by ion chromatography. Polyphosphates longer than 23 P(i) residues were processed by PPK completely after 1 h incubation, but complete processing of those between 11 and 22 P(i) residues required 6h incubation. Limited processing of polyphosphates of 10 P(i) residues or shorter were observed even after 6h incubation. Metachromasy of Toluidine blue O, an alternative method for polyphosphate quantification, showed broader chain-length specificity although it was not as sensitive as the enzymatic assay. Combination of these two methods would be practically applicable to analysis of polyphosphate dynamics in living organisms.  相似文献   

18.
Growth of Pseudomonas aeruginosa on spermine requires a functional γ‐glutamylpolyamine synthetase PauA2. Not only subjected to growth inhibition by spermine, the pauA2 mutant became more sensitive to β‐lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant, which alleviated toxicity, were isolated from selection plates containing spermine. These suppressors share common phenotypic changes including delayed growth rate, retarded swarming motility, and pyocyanin overproduction. Genome resequencing of a representative suppressor revealed a unique C599T mutation at the phoU gene that results in Ser200Leu substitution and a constitutive expression of the Pho regulon. Identical phenotypes were also observed in a ΔpauA2ΔphoU double knockout mutant and complemented by the wild‐type phoU gene. Accumulation of polyphosphate granules and spermine resistance in the suppressor were reversed concomitantly when expressing exopolyphosphatase PPX from a recombinant plasmid, or by the introduction of deletion alleles in pstS pstC for phosphate uptake, phoB for Pho regulation, and ppk for polyphosphate synthesis. In conclusion, this study identifies polyphosphate accumulation due to an activated Pho regulon and phosphate uptake by the phoU mutation as a potential protection mechanism against spermine toxicity.  相似文献   

19.
We report the cloning, overexpression, purification, and characterization of the Leishmania major exopolyphosphatase (LmPPX). The product of this gene (LmPPX), the first related to polyphosphate (polyP) metabolism isolated from an eukaryotic organism different from yeast, has 388 amino acids and a molecular mass of 48 kDa. LmPPX differs from other exopolyphosphatases previously investigated. Heterologous expression of LmPPX in Escherichia coli produced a functional enzyme that was similar to the yeast exopolyphosphatase with respect to its Mg(2+) requirement, optimum pH, and sensitivity to cations, amino acids, and heparin but that, in contrast to the yeast enzyme and other exopolyphosphatases investigated before, acts on polyP of short chain lengths with higher rates and affinity. LmPPX is a processive enzyme, and it does not hydrolyze pyrophosphate, ATP, or p-nitrophenylphosphate. Confocal immunofluorescence microscopy using affinity-purified antibodies against the recombinant enzyme indicated an acidocalcisomal and cytosolic localization. High levels of short chain (21.4 +/- 3.0 mm) and long chain polyP (55.9 +/- 5.6 mm) were detected in L. major promastigotes. The unique characteristics of LmPPX and L. major polyP metabolism may facilitate the development of novel antileishmanial agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号