首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Isoenzyme c of horseradish peroxidase (HRP‐C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP‐C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP‐C, the JcGP1‐induced reaction was enhancer independent, which made the enzyme‐linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long‐term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long‐term stable CL signal combined with enhancer‐independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Luminol and lucigenin chemiluminescence (CL) responses produced by separated human blood polymorphonuclear leukocytes (pmn) and monocytes (mono) have been studied following stimulation with the surface-receptor agonist fMLP (a synthetic chemotactic peptide) and the protein kinase C activator phorbol myristate acetate (PMA). Pmn produced two- to threefold the luminol CL and superoxide anion (O2) levels of mono; lucigenin CL was similar for both cell-types. The myeloperoxidase (MPO) inhibitor salicylhydroxamic acid (SHA) abrogated luminol but not lucigenin CL in both cell types, but did not further inhibit the already grossly subnormal luminol CL responses seen with MPO-deficient cells which produced normal lucigenin CL. SHA also profoundly inhibited the luminol CL response in a cell-free MPO–H2O2 system. Mono lucigenin CL does not appear to specifically measure O2 production. These data show that luminol CL provides a useful measure of pmn and also mono MPO activity. However, analysis of the effects of various reactive oxygen species (ROS) scavengers, assessed on phagocyte and cell-free CL systems (both MPO–H2O2 and superoxide generating) suggest that the luminol CL signal is not entirely dependent on MPO activity.  相似文献   

4.
It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off‐line gold nanoparticle (AuNP)‐catalyzed luminol–H2O2 CL system. By contrast, flavonoids enhanced the CL intensity of an on‐line AuNP‐catalyzed luminol–H2O2 CL system. In the off‐line system, the AuNPs were prepared beforehand, whereas in the on‐line system, AuNPs were produced by on‐line mixing of luminol prepared in a buffer solution of NaHCO3 ? Na2CO3 and HAuCl4 with no need for the preliminary preparation of AuNPs. The on‐line system had prominent advantages over the off‐line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off‐line AuNP‐catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy‐sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on‐line system was ascribed to the presence of flavonoids promoting the on‐line formation of AuNPs, which better catalyzed the luminol–H2O2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP‐catalyzed CL system.  相似文献   

5.
The behaviors of 15 kinds of metal ions in the thiol‐capped CdTe quantum dots (QDs)–H2O2 chemiluminescence (CL) reaction were investigated in detail. The results showed that Ag+, Cu2+ and Hg2+ could inhibit CdTe QDs and H2O2 CL reaction. A novel CL method for the selective determination of Ag+, Cu2+ and Hg2+ was developed, based on their inhibition of the reaction of CdTe QDs and H2O2. Under the optimal conditions, good linear relationships were realized between the CL intensity and the logarithm of concentrations of Ag+, Cu2+ and Hg2+. The linear ranges were from 2.0 × 10?6 to 5.0 × 10?8 mol L?1 for Ag+, from 5.0 × 10?6 to 7.0 × 10?8 mol L?1 for Cu2+ and from 2.0 × 10?5 to 1.0 × 10?7 mol L?1 for Hg2+, respectively. The limits of detection (S/N = 3) were 3.0 × 10?8, 4.0 × 10?8 and 6.7 × 10?8 mol L?1 for Ag+, Cu2+ and Hg2+, respectively. A possible mechanism for the inhibition of CdTe QDs and H2O2 CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
S,N co‐doped carbon quantum dots (N,S‐CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV–Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S‐CQDs can enhance the chemiluminescence intensity of a luminol–H2O2 system. The possible mechanism of the luminol–H2O2–(N,S‐CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol–H2O2–N,S‐CQDs system. So, a novel flow‐injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5–50 μg ml?1 and a detection limit of 0.12 μg ml?1. The method shows promising application prospects.  相似文献   

7.
Lu Han  Ying Li  Aiping Fan 《Luminescence》2018,33(4):751-758
Peroxidase is a commonly used catalyst in luminol–H2O2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol–H2O2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol–H2O2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1O2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis.  相似文献   

8.
A simple and sensitive chemiluminescence (CL) method has been developed for the determination of ampicillin sodium at submicromolar levels. The method is based on the inhibitory effect of ampicillin sodium on the cupric oxide nanoparticles (CuO NPs)–luminol–H2O2 CL reaction. Experimental parameters affecting CL inhibition including concentrations of CuO NPs, luminol, H2O2 and NaOH were optimized. Under optimum conditions, the calibration plot was linear in the analyte concentration range 4.0 × 10‐7–4.0 × 10‐6 mol/L. The limit of detection was 2.6 × 10‐7 mol/L and the relative standard deviation (RSD) for six replicate determinations of 1 × 10‐6 mol/L ampicillin sodium was 4.71%. Also, X–ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were employed to characterize the CuO NPs. The utility of the proposed method was demonstrated by determining ampicillin sodium in pharmaceutical preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
M. Rost  E. Karge  W. Klinger 《Luminescence》1998,13(6):355-363
Evidence is provided that the amplifiers luminol and lucigenin react with different reactive oxygen species (ROS), depending on the ROS-generating system used. H2O2 is used to produce calibration curves for luminol- and lucigenin-amplified chemiluminescence. With this chemiluminescence generator we characterized the specificity and sensitivity of luminol- and lucigenin-amplified chemiluminescence and also studied penicillin G, a known enhancer of luminol-amplified chemiluminescence. The combination of luminol and lucigenin in reciprocally changing concentrations is effective in an additive manner, but the weak amplifier penicillin increases luminol-amplified chemiluminescence distinctly more than in an additive manner in different combinations. Lucigenin-amplified chemiluminescence is increased by penicillin at about 1% of the optimum concentration of penicillin; increasing concentrations of penicillin are less and less effective. On the other hand, low lucigenin concentrations enhance penicillin-amplified chemiluminescence at optimum penicillin concentrations more than in an additive manner. Fe2+ does not alter luminol-, lucigenin- or penicillin-amplified chemiluminescence. Co2+ increases luminol-amplified chemiluminescence by a factor of 100. Lucigenin- and penicillin-amplified chemiluminescence are minimally enhanced by Co2+. Cu2+ enhances luminol-amplified chemiluminescence with increasing concentrations by a factor of 1000. Lucigenin-amplified chemiluminescence increases also by the factor of 1000, but the concentration–reaction curve is not as steep. NaOCl enhances H2O2/Fe2+-driven luminol-amplified chemiluminescence in a concentration-dependent manner by a factor of 104 (in the highest concentration of 10 mmol/L) and lucigenin amplified chemiluminescence only by a factor of about 25. Catalase (CAT) abolishes luminol-, lucigenin- and penicillin-amplified chemiluminescence completely, whereas superoxide dismutase (SOD) has no effect on luminol- or penicillin-amplified chemiluminescence, but enhances lucigenin-amplified chemiluminescence five-fold increasingly with increasing SOD activity. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over–the‐counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol–HRP–H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol–HRP–H2O2 system. A putative enhancement mechanism for the luminol–H2O2–HRP–acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O‐H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol–H2O2–HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
8‐Amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4(2H,3H)dione (L‐012) was recently synthesized as a new chemiluminescence (CL) probe; the light intensity and the sensitivity of L‐012 are higher than those of other CL probes such as luminol. Previously, our group developed four lophine‐based CL enhancers of the horseradish peroxidase (HRP)‐catalyzed CL oxidation of luminol, namely 2‐(4‐hydroxyphenyl)‐4,5‐diphenylimidazole (HDI), 2‐(4‐hydroxyphenyl)‐4,5‐di(2‐pyridyl)imidazole (HPI), 4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenylboronic acid (DPA), and 4‐[4,5‐di(2‐pyridyl)‐1H‐imidazol‐2‐yl]phenylboronic acid (DPPA), and showed that DPPA was suitable for the photographic detection of HRP. In this study, we replaced luminol with L‐012 and evaluated these as L‐012‐dependent CL enhancers. In addition, to detect HRP and/or H2O2 with higher sensitivity, each detection condition for the L‐012–HRP–H2O2 enhanced CL was optimized. All the derivatives enhanced the L‐012‐dependent CL as well as luminol CL; HPI generated the highest enhanced luminescence. Under optimized conditions for HRP detection, the detection limit of HRP was 0.08 fmol. By contrast, the detection limit of HRP with the enhanced L‐012‐dependent CL using 4‐iodophenol, which is a common enhancer of luminol CL, was 1.1 fmol. With regard to H2O2 detection, the detection limits for enhanced CL with HPI and 4‐iodophenol were 0.29 and 1.5 pmol, respectively. Therefore, it is demonstrated that HPI is the most superior L‐012‐dependent CL enhancer. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Visible oscillating chemiluminescence (CL) of luminol–H2O2–KSCN–CuSO4 was studied using the organic base (2‐hydroxyethyl)trimethylammonium hydroxide. The effect of concentrations of luminol, H2O2, KSCN, CuSO4 and the base were investigated in a batch reactor. This report shows how the concentration of components involved in the oscillating CL system influenced the oscillation period, light amplitude and total time of light emission. The oscillating CL with different bases was also investigated. Results indicated that using 2‐HETMAOH causes regular oscillating CL with nearly the same oscillating period. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A determination method for Co(II), Fe(II) and Cr(III) ions by luminol‐H2O2 system using chelating reagents is presented. A metal ion‐chelating ligand complex with a Co(II) ion and a chelating reagent like ethylenediaminetetraacetic acid (EDTA) produced highly enhanced chemiluminescence (CL) intensity as well as longer lifetime in the luminol‐H2O2 system compared to metals that exist as free ions. Whereas free Cu(II) and Pb(II) ions had a strong catalytic effect on the luminol‐H2O2 system, significantly, the complexes of Cu(II) and Pb(II) with chelating reagents lost their catalytic activity due to the chelating reagents acting as masking agents. Based on the observed phenomenon, it was possible to determine Co(II), Fe(II) and Cr(III) ions with enhanced sensitivity and selectivity using the chelating reagents of the luminol‐H2O2 system. The effects of ligand, H2O2 concentration, pH, buffer solution and concentrations of chelating reagents on CL intensity of the luminol‐H2O2 system were investigated and optimized for the determination of Co(II), Fe(II) and Cr(III) ions. Under optimized conditions, the calibration curve of metal ions was linear over the range of 2.0 × 10‐8 to 2.0 × 10‐5 M for Co(II), 1.0 × 10‐7 to 2.0 × 10‐5 M for Fe (II) and 2.0 × 10‐7 to 1.0 × 10‐4 M for Cr(III). Limits of detection (3σ/s) were 1.2 × 10‐8, 4.0 × 10‐8 and 1.2 × 10‐7 M for Co(II), Fe(II) and Cr(III), respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A chemiluminescence (CL) assay for the determination of antioxidant capacity (AOC) has been optimized and applied to analyses of herbal extracts in the present study. The optimal concentrations of reagents (luminol, H2O2, horseradish peroxidase) have been determined, as well as the optimal reaction conditions (wavelength, pH, temperature, sample volume). All of the measurements were performed at the emission maximum of the oxidized form of luminol (425 nm). The optimal concentrations of the reagents were determined as follows: 1.6 mmol/L luminol, 7.5 mmol/L H2O2 and 0.14 U/mL horseradish peroxidase activity in the reaction mixture. Analyses were carried out in phosphate buffer, pH 7.4, at room temperature. With the optimized CL assay, the AOCs of various water and methanol herbal extracts were determined (dog rose hips, plantain leaves and coltsfoot and thyme flowers) and the results were compared to those obtained by other classical methods for the evaluation of antioxidants. Strong correlations (r > 0.9) with the Folin–Ciocalteau assay and the 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH) assay are confirmed, although there is no correlation between AOC and the concentration of ascorbic acid in the samples analysed. This optimized CL assay is simple, rapid and reliable, and it represents a good alternative to classical methods (Folin–Ciocalteau, DPPH) for the determination of AOC of herbal extracts and other food samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Chemiluminescence (CL) on the time scale of microseconds to milliseconds from luminol solution after illumination of a 355 nm pulse laser is reported. It was found that the CL is the emission from 3‐aminophthalate ion (AP*). In CL decay after the pulse laser illumination, a peak was observed from about 200 to 30 µs depending on the laser power and the luminol concentration. It seemed that there was a fast and slow decay process; their kinetics were greatly dependent on the laser power and the luminol concentration. Dissolved oxygen was involved in the CL and played the same role on the whole time scale of microseconds to milliseconds. Involvement of reactive oxygen species such as H2O2, 1O2, O2?? and OH in the CL was examined by adding their scavengers. Experimental results suggested that the possibility of involvement of H2O2 and 1O2 in the CL was low. The CL in time periods less than 50 µs might be related to ?OH. The ?O2??‐induced CL increased with time after 50 µs and became dominant on the time scale of milliseconds. The CL was considered to be caused by both the photoionization and type I reaction mechanisms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple and ultrasensitive flow injection chemiluminescence competitive immunoassay based on gold nanoparticle‐loaded enzyme for the detection of chloramphenicol (CAP) residues in shrimp and honey has been developed. Due to their good biocompatibility and large specific surface area, carboxylic resin beads can be used as solid phase carriers to immobilize more coating antigens (Ag). In addition, gold nanoparticles could provide an effective matrix for loading more CAP antibody and horseradish peroxidase, which would effectively catalyze the system of luminol–p‐iodophenol (PIP)–H2O2. A competitive immunoassay strategy was used for detection of CAP, in which CAP in the sample would compete with the coating Ag for the limited antibodies, leading to a chemiluminescence (CL) signal decrease with increase in CAP concentration. A wide linear range 0.001–10 ng ml?1 (R2 = 0.9961) was obtained under optimized conditions, and the detection limit (3σ) was calculated to be 0.33 pg ml?1. This method was also been successfully applied to determine CAP in shrimp and honey samples. The immunosensor proposed in this study not only has the advantages of high sensitivity, wider linear range, and satisfactory stability, but also expands the application of flow injection CL immunoassay in antibiotic detection.  相似文献   

18.
Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol–H2O2–horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO/PhOH) vs. luminol radicals (L/LH) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol–H2O2–horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
It was found that isoniazid (ISO) or p‐aminosalicylic acid (PAS) could enhance the chemiluminescence (CL) emission from Cu (II)‐luminol‐hydrogen peroxide system, and the increased chemiluminescence signals were proportional to their concentrations, respectively. Based on this phenomenon, a chemiluminescence method coupled to capillary electrophoresis (CE) was established for simultaneous determination of ISO and PAS. The CE conditions including running buffer and running voltage were investigated in detail. The effects of the pH of H2O2 solution and the concentrations of luminol, H2O2 and Cu (II) on the CL signal were also investigated carefully. Under the optimized conditions, the analysis could be accomplished within 10 min, with the limits of detection of 0.3 µg mL–1 for ISO and 1.1 µg mL–1 for PAS, corresponding to 7.2 and 26.4 pg per injection (24 nL), respectively. Finally, the method was validated by determining the two analytes in pharmaceutical preparation and spiked human serum samples. The results of pharmaceutical tablet analysis were in good agreement with the labeled amounts. The recoveries for ISO and PAS in human serum were in the range of 92–104% and 90–113%, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Based on the inhibition effect of transferrin (Tf) on the reaction of the luminol–hydrogen peroxide (H2O2) chemiluminescence (CL) system, catalysed by meso‐tetra‐(3‐methoxyl‐4‐hydroxyl) phenyl manganese porphyrin (MnP) as a mimetic enzyme of peroxides, a sensitive flow‐injection CL method has been developed for the determination of Tf in an alkaline medium. The CL reaction was carefully investigated by examining the variations of reaction conditions. Under optimum conditions, the linear range for the determination of transferrin was 0.04–20.0 μg/mL and the detection limit was 1.62 ng/mL. This proposed method was sensitive, convenient and simple, and has been successfully applied to the determination of transferrin in a serum sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号