首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new high‐performance liquid chromatography (HPLC) method was developed for the enantiomeric resolution of five β‐adrenergic blockers on a Chiralpak IC column (250 mm × 4.6 mm, 5.0 μm particle size) in normal phase mode. The mobile phase used was n‐hexane‐ethanol‐diethylamine in different proportions at the flow rate of 1.0 mL/min with the column temperature of 25°C using a UV detector at 230 nm. The influences of base additives and alcohol modifiers were evaluated and optimized. The maximum resolution values for bevantolol, propranolol carteolol, esmolol, and metoprolol were 4.80, 2.77, 2.09, 2.30, and 1.11, respectively. To gain a better understanding of the interaction between chiral stationary phase and analyte enantiomers, the molecular docking of chiral stationary phase with five pairs of enantiomer was carried out using AutoDock molecular docking technique. By simulation studies, the mechanism of chiral recognition was determined. According to the results, hydrogen bond interactions and π‐π interactions were the chief interactions for the chiral recognition.  相似文献   

2.
Energy transfer engineering based on fluorescent probes for directly sensing enzyme activities are in great demand as enzyme‐mediated transformations, which are central to all biological processes. Here, a fluorescence carbon dot (CD)‐based assay exhibiting selective responses to the quantitation of β‐glucosidase and the effect of its inhibitor was developed. The most common substrate, para‐nitrophenyl‐β‐d ‐glucopyranoside (pNPG) was hydrolyzed by β‐glucosidase to release p‐nitrophenol (pNP), which can efficiently quench fluorescence of CDs via an inner filter effect and electron transfer. However, in the presence of inhibitors of β‐glucosidase, the fluorescence intensity gradually recovered as the concentration of inhibitors increased. Therefore, the enzyme‐triggered fluorescence turn‐off/turn‐on of specific CDs successfully achieved sensitive detection of β‐glucosidase and monitored the effect of its inhibitors. This new strategy was applied to detect β‐glucosidase and monitor β‐glucosidase inhibitor in hepatoma cells using cell imaging. All results suggest that the new method is sensitive and promising for use in cancer diagnosis and treatment.  相似文献   

3.
Secretory vesicle swelling is required for vesicular discharge during cell secretion. The Gαo‐mediated water channel aquaporin‐6 (AQP‐6) involvement in synaptic vesicle (SV) swelling in neurons has previously been reported. Studies demonstrate that in the presence of guanosine triphosphate (GTP), mastoparan, an amphiphilic tetradecapeptide from wasp venom, activates Go protein GTPase, and stimulates SV swelling. Stimulation of G proteins is believed to occur via insertion of mastoparan into the phospholipid membrane to form a highly structured α‐helix that resembles the intracellular loops of G protein‐coupled adrenergic receptors. Consequently, the presence of adrenoceptors and the presence of an endogenous β‐adrenergic agonist at the SV membrane is suggested. Immunoblot analysis of SV using β‐adrenergic receptor antibody, and vesicle swelling experiments using β‐adrenergic agonists and antagonists, demonstrate the presence of functional β‐adrenergic receptors at the SV membrane. Since a recent study shows vH+‐ATPase to be upstream of AQP‐6 in the pathway leading from Gαo‐mediated swelling of SV, participation of an endogenous β‐adrenergic agonist, in the binding and stimulation of its receptor to initiate the swelling cascade is demonstrated.  相似文献   

4.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

5.
Adrenaline (also known as Epinephrine) is a hormone, which works as major regulator of various biological events such stages of vertebrate, the role of adrenaline for early embryogenesis has been as heart rate, blood vessel and air passage diameters, and metabolic shifts. Although its specific receptors are expressing at the early developmental stage those functions are poorly understood. Here, we show that loss‐of‐functional effects of adrenergic receptor β‐2 (Adrβ2), which was known as the major receptor for adrenaline and highly expressed in embryonic stages, led posterior defects at the tadpole stage of Xenopus embryos, while embryos injected with Adrβ2 mRNA or treated with adrenaline hormone adversely lost anterior structures. This posteriorization effect by adrenaline hormone was dose‐dependently increased but effectively rescued by microinjection of antisense morpholino oligomer for Adrβ2 (Adrβ2‐MO). Combination of adrenaline treatments and microinjection of Adrβ2 mRNA maximized efficiency in its posteriorizing activity. Interestingly, both gain‐ and loss‐of‐functional treatment for β‐adrenergic signaling could not influence anterior neural fate induced by overexpression of Chordin mRNA in presumptive ectodermal region, meaning that it worked via mesoderm. Taken together with these results, we conclude that adrenaline is a novel regulator of anteroposterior axis formation in vertebrates.  相似文献   

6.
In pH 4.99‐6.06 Britton‐Robinson (BR) buffer medium, 6‐benzylaminopurine (6‐BA) reacted with Na2WO4 to form 1:1 anionic chelate (6‐BA·WO4)2‐, which further reacted with rhodamine 6G to form ternary ion complexes at room temperature. This resulted in a significant enhancement of resonance Rayleigh scattering (RRS) with a maximum RRS wavelength of 316 nm. Meanwhile, the fluorescence of the solution was quenched and excitation (λex) and emission (λem) wavelengths of the fluorescence were 290 and 559 nm, respectively. Intensities of RRS enhancing (ΔIRRS) and fluorescence quenching (ΔIF) were directly proportional to concentrations of 6‐BA. As a result, RRS and fluorescence quenching for determination of trace amounts of 6‐BA were developed. Under optimal conditions, linear ranges and detection limits of the two methods were 0.05‐15.00 µg/mL and 8.2 ng/mL (RRS), 0.50‐15.00 µg/mL and 17.0 ng/mL, respectively. It was found that the RRS method was superior to fluorescence quenching. The influence of these methods were investigated and results showed that RRS had good selectivity. RRS was applied to determine 6‐BA in vegetable samples with satisfactory results. Furthermore, the reaction mechanisms of the ternary ion‐association system are discussed. In addition, the polarization experiment revealed that the resonance light scattering (RLS) peak of Na2WO4‐6‐BA‐R6G consisted mainly of depolarized resonance fluorescence and resonance scattering. It was speculated that light emission fluorescence energy (EL) transformed into resonance light scattering energy (ERLS), which was a key reason for enhancement of RRS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Sixteen β‐adrenergic antagonists namely acebutalol, alprenolol, atenolol, bisoprolol, bopindolol, bufurolol, carazolol, celiprolol, indenolol, metaprolol, nebivolol, oxprenolol, practolol, propranolol, tertalol, and timolol, and two β‐adrenergic agonists namely cimeterol and clenbuterol were resolved on AmyCoat (150 × 46 mm, 3 μm size of silica particle) by using (85:15:0.1, v/v/v), (90:10:0.1, v/v/v), and (95:05:0.1, v/v/v) combinations of n‐heptane, ethanol, and diethylamine solvents, respectively. The flow rates used were 0.5, 1.0, 2.0, and 3.0 ml/min with detection at 225 nm. The values of capacity, separation, and resolution factors ranged from 0.38 to 19.70, 1.08–2.33, and 1.0 and 4.50, respectively. The maximum and minimum resolutions were achieved for celiprolol and bufurolol, respectively. The chiral recognition mechanisms were also discussed. The values of validation parameters were calculated. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Basidiomycete strains synthesize several types of β‐d ‐glucans, which play a major role in the medicinal properties of mushrooms. Therefore, the specific quantification of these β‐d ‐glucans in mushroom strains is of great biochemical importance. Because published assay methods for these β‐d ‐glucans present some disadvantages, a novel colorimetric assay method for β‐d ‐glucan with alcian blue dye was developed. The complex formation was detected by following the decrease in absorbance in the range of 620 nm and by hypsochromic shift from 620 to 606 nm (~14 nm) in UV‐Vis spectrophotometer. Analysis of variance was used for optimization of the slope of the calibration curve by using the assay mixture containing 0.017% (w/v) alcian blue in 2% (v/v) acetic acid at pH 3.0. The high‐throughput colorimetric assay method on microtiter plates was used for quantification of β‐d ‐glucans in the range of 0–0.8 μg, with a slope of 44.15 × 10?2 and a limit of detection of 0.017 μg/well. Recovery experiments were carried out by using a sample of Hericium erinaceus, which exhibited a recovery of 95.8% for β‐1,3‐d ‐glucan. The present assay method exhibited a 10‐fold higher sensitivity and a 59‐fold lower limit of detection compared with the published method with congo red. β‐d ‐glucans of several mushrooms strains were isolated from fruiting bodies and mycelia, and they were quantified by this assay method. This assay method is fast, specific, simple, and it can be used to quantify β‐d ‐glucans from other biological sources. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1526–1535, 2015  相似文献   

9.
Objective: The influence of growth hormone (GH) on the regulation of lipolytic response to specific agonists to β‐adrenoceptors and several post‐receptor steps in the lipolytic cascade were investigated. Research Methods and Procedures: Adipose tissues from rats were incubated with or without GH (1.38 nM). After a 24‐hour incubation, isolated adipocytes were prepared for different assays. Rats were hypophysectomized. One week after operation, l‐thyroxine and hydrocortisone acetate was given to hypophysectomized rats. One group of rats was treated with GH (1.33 mg/kg, daily). After 1 week of hormonal treatment, adipose tissues were removed for different studies. Results: GH treatment increased both basal lipolysis and lipolytic sensitivity to dobutamine and CGP 12177 in adipocytes. The lipolytic sensitivity to terbutaline was not influenced by GH treatment. GH treatment increased the maximal lipolytic response to dobutamine and CGP 12177, but not to terbutaline as determined with absolute values of lipolysis. Forskolin‐induced lipolysis was increased by addition of GH to tissues. Moreover, GH treatment resulted in enhanced expression of hormone‐sensitive lipase. GH treatment in hypophysectomized rats influenced neither the expressions of Gαs protein and cholera toxin‐catalyzed adenosine diphosphate‐ribosylation of Gαs protein, nor cholera toxin‐induced 3′, 5′‐cyclic adenosine monophosphate accumulation. However, the expression of Gαi protein was decreased after GH treatment. Discussion: These and previous results suggest that GH increases lipolysis in rat adipocytes partly through the β‐adrenergic system, including increases in both β1‐ and β3‐adrenergic receptor function, and partly through enhanced adenylate cyclase function, and expression of hormone‐sensitive lipase, perhaps via a decrease in Gαi protein expression.  相似文献   

10.
In an acid medium solution, proteins such as bovine serum albumin, human serum albumin, ovalbumin, hemoglobin, lysozyme, γ‐globulin, α‐chymotrypsin and papain could react with [PdI4]2? by virtue of electrostatic attraction and hydrophobic force to form ion‐association complexes. As a result, the resonance Rayleigh scattering (RRS) and resonance nonlinear scattering such as second‐order scattering (SOS) and frequency doubling scattering (FDS) intensities were enhanced greatly and new scattering spectra appeared. The maximum scattering peaks of RRS, SOS and FDS were at 367, 720 and 370 nm, respectively. The enhanced RRS, SOS and FDS intensities were directly proportional to the concentrations of proteins. The detection limits for the different proteins were 2.4–11.8 ng/mL for RRS method, 9.5–47.9 ng/mL for SOS method and 4.6–18.5 ng/mL for FDS method. In this work, the influences of the interaction of [PdI4]2? with proteins on spectral characteristics of RRS, SOS and FDS were investigated and the optimum conditions were tested. Meanwhile, the effects of coexisting substances were tested and the results showed that the method exhibited a good selectivity. Based on the above research, a highly sensitive, simple and rapid method for the determination of trace amounts of proteins by resonance light scattering technique has been developed. It can be applied to the determination of proteins in tablet, human serum and urine samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A fluorescence method was established for a α‐glucosidase activity assay and inhibitor screening based on β‐cyclodextrin‐coated quantum dots. p‐Nitrophenol, the hydrolysis product of the α‐glucosidase reaction, could quench the fluorescence of β‐cyclodextrin‐coated quantum dots via an electron transfer process, leading to fluorescence turn‐off, whereas the fluorescence of the system turned on in the presence of α‐glucosidase inhibitors. Taking advantage of the excellent properties of quantum dots, this method provided a very simple, rapid and sensitive screening method for α‐glucosidase inhibitors. Two α‐glucosidase inhibitors, 2,4,6‐tribromophenol and acarbose, were used to evaluate the feasibility of this screening model, and IC50 values of 24 μM and 0.55 mM were obtained respectively, which were lower than those previously reported. The method may have potential application in screening α‐glucosidase inhibitors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We assessed interactions between polymorphisms in the β‐adrenergic receptor genes and longitudinal changes in obesity from childhood to adulthood using longitudinal data collected over a 24‐year period from 1973 to 1996. Sex‐ and age‐stratified analyses using random coefficients models were used to examine gene—gene interaction effects on obesity measures in 1179 African‐American and white men and women (71% white, 57% women). Suggestive evidence for an interaction (p = 0.022) between the β1‐ and β2‐adrenergic receptors was observed in men for longitudinal change in BMI. Men with Gly/Gly genotypes for both the β1 and β2 receptors showed significant increases (~0.6%/yr) in BMI from childhood to adulthood. Women showed suggestive evidence for an interaction (p = 0.035) between the β1‐ and β3‐adrenergic receptors for change over time in BMI. Women with Gly/Gly genotypes at the β1‐receptor and carrying at least one β3‐Arg allele showed notable increases in BMI. The regulation of lipolysis and development of obesity differ markedly between men and women and may be influenced by genetic polymorphisms, which contribute to the efficiency of the β‐adrenergic receptors, and hormonal effects on adrenergic receptor activity.  相似文献   

13.
β‐d ‐glucans from mushroom strains play a major role as biological response modifiers in several clinical disorders. Therefore, a specific assay method is of critical importance to find useful and novel sources of β‐d ‐glucans with anti‐tumor activity. Hybridoma technology was used to raise monoclonal antibodies (Mabs) against extracellular β‐d ‐glucans (EBG) from Pleurotus ostreatus. Two of these hybridoma clones (3F8_3H7 and 1E6_1E8_B3) secreting Mabs against EBG from P. ostreatus were selected and 3F8_3H7 was used to investigate if they are polyol‐responsive Mabs (PR‐Mabs) by using ELlSA‐elution assay. This hybridoma cell line secreted Mab of IgM class, which was purified in a single step by gel filtration chromatography on Sephacryl S‐300HR, which revealed a protein band on native PAGE with Mr of 917 kDa. Specificity studies of Mab 3F8_3H7 revealed that it recognized a common epitope on several β‐d ‐glucans from different basidiomycete strains as determined by indirect ELlSA and Western blotting under native conditions. This Mab exhibited high apparent affinity constant (KApp) for β‐d ‐glucans from several mushroom strains. However, it revealed differential reactivity to some heat‐treated β‐d ‐glucans compared with the native forms suggesting that it binds to a conformation‐sensitive epitope on β‐d ‐glucan molecule. Epitope analysis of Mab 3F8_3H7 and 1E6_1E8_B3 was investigated by additivity index parameter, which revealed that they bound to the same epitope on some β‐d ‐glucans and to different epitopes in other antigens. Therefore, these Mab can be used to assay for β‐d ‐glucans as well as to act as powerful probes to detect conformational changes in these biopolymers. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:116–125, 2016  相似文献   

14.
A stereoselective high‐performance liquid chromatographic (HPLC) method was developed and validated to determine S‐(?)‐ and R‐(+)‐propranolol in rat serum. Enantiomeric resolution was achieved on cellulose tris(3,5‐dimethylphenylcarbamate) immobilized onto spherical porous silica chiral stationary phase (CSP) known as Chiralpak IB. A simple analytical method was validated using a mobile phase consisted of n‐hexane‐ethanol‐triethylamine (95:5:0.4%, v/v/v) at a flow rate of 0.6 mL min‐1 and fluorescence detection set at excitation/emission wavelengths 290/375 nm. The calibration curves were linear over the range of 10–400 ng mL‐1 (R = 0.999) for each enantiomer with a detection limit of 3 ng mL‐1. The proposed method was validated in compliance with ICH guidelines in terms of linearity, accuracy, precision, limits of detection and quantitation, and other aspects of analytical validation. Actual quantification could be made for propranolol isomers in serum obtained from rats that had been intraperitoneally (i.p.) administered a single dose of the drug. The proposed method established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology. Molecular modeling studies including energy minimization and docking studies were first performed to illustrate the mechanism by which the active enantiomer binds to the β‐adrenergic receptor and second to find a suitable interpretation of how both enantiomers are interacting with cellulose tris(3,5‐dimethylphenylcarbamate) CSP during the process of resolution. The latter interaction was demonstrated by calculating the binding affinities and interaction distances between propranolol enantiomers and chiral selector. Chirality 26:194–199, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
In weak acid medium, aluminum(III) can react with chlorophosphonazo III [CPA(III), H8L] to form a 1:1 coordination anion [Al(OH)(H4L)]2‐. At the same time, proteins such as bovine serum albumin (BSA), lysozyme (Lyso) and human serum albumin (HSA) existed as large cations with positive charges, which further combined with [Al(OH)(H4L)]2‐ to form a 1:4 chelate. This resulted in significant enhancement of resonance Rayleigh scattering (RRS), second‐order scattering (SOS) and frequency doubling scattering (FDS). In this study, we investigated the interaction between [Al(OH)(H4L)]2‐ and proteins, optimization of the reaction conditions and the spectral characteristics of RRS, SOS and FDS. The maximum RRS wavelengths of different protein systems were located at 357–370 nm. The maximum SOS and FDS wavelengths were located at 546 and 389 nm, respectively. The scattering intensities (ΔI) of the three methods were proportional to the concentration of the proteins, within certain ranges, and the detection limits of the most sensitive RRS method were 2.6–9.3 ng/mL. Moreover, the chelate reaction mechanism or the reasons for the enhancement of RRS were discussed through absorption spectra, fluorescence spectra and circular dichroism (CD) spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive method for the detection of 6‐mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP–AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP–AuNPs was proportional to MP concentration in the range 0.0681–1.702 μg mL?1. The linear regression equation was represented as follows: ΔI RLS = 9.31 + 82.42c (r  = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL?1. The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9–101.7% with a relative standard deviation (RSD) (n  = 5) of 0.59–0.77% for three synthetic samples, and 97.5–110.0% with an RSD of 0.98–2.10% (n =  5) for tablet samples.  相似文献   

17.
Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1‐acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β‐barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are ?18.2, ?14.5, and ?11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10–95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α‐helical content is observed that coincides with an increase in β‐sheet content. Above 45 °C, also β‐strands tend to unfold, and the observed decrease in β‐sheet coincides with an increase of β‐turns accompanied by a conformational shift of the nearby disulfide bridge from high‐energy trans‐gauche‐trans to more relaxed gauche‐gauche‐trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β‐sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein–ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone‐like function of AGP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
《Chirality》2017,29(8):451-457
A major challenge in pharmaceuticals for clinical applications is to alter the solubility, stability, and toxicity of drug molecules in living systems. Cyclodextrins (CDs) have the ability to form host–guest inclusion complexes with pharmaceuticals for further development of new drug formulations. The inclusion complex of clomiphene citrate (CL), a poorly water‐soluble drug, with native β‐cyclodextrin (β‐CD) was characterized by a one and two‐dimensional nuclear magnetic resonance (NMR) spectroscopic approach and also by molecular docking techniques. Here we report NMR and a computational approach in preferential isomeric selection of CL, which exists in two stereochemical isomers, enclomiphene citrate (ENC; E isomer) and zuclomiphene citrate (ZNC; Z isomer) with β‐CD. β‐CD cavity protons, namely, H‐3′ and H‐5′, experienced shielding in the presence of CL. The aromatic ring protons of the CL molecule were observed to be deshielded in the presence of β‐CD. The stoichiometric ratio of the β‐CD:CL inclusion complex was observed by NMR and found to be 1:1. The overall binding constant of β‐CD:CL inclusion complexes was based on NMR chemical shifts and was calculated to be 50.21 M−1. The change in Gibb's free energy (∆G) was calculated to be −9.80 KJ mol−1. The orientation and structure of the β‐CD:CL inclusion complexes are proposed on the basis of NMR and molecular docking studies. 2D 1H‐1H ROESY confirmed the involvement of all three aromatic rings of CL in the inclusion complexation with β‐CD in the solution, confirming the multiple equilibria between β‐CD and CL. Molecular docking and 2D 1H‐1H ROESY provide insight into the inclusion complexation of two isomers of CL into the β‐CD cavity. A molecular docking technique further provided the different binding affinities of the E and Z isomers of CL with β‐CD and confirmed the preference of the Z isomer binding for β‐CD:CL inclusion complexes. The study indicates that the formation of a hydrogen bond between –O– of CL and the hydrogen atom of the hydroxyl group of β‐CD was the main factor for noncovalent β‐CD:CL inclusion complex formation and stabilization in the aqueous phase.  相似文献   

19.
We established a new animal model called SPORTS (Spontaneously‐Running Tokushima‐Shikoku) rats, which show high‐epinephrine (Epi) levels. Recent reports show that Epi activates adenosine monophosphate (AMP)–activated protein kinase (AMPK) in adipocytes. Acetyl‐CoA carboxylase (ACC) is the rate‐limiting enzyme in fatty acid synthesis, and the enzymatic activity is suppressed when its Ser‐79 is phosphorylated by AMPK. The aim of this study was to investigate the in vivo effect of Epi on ACC and abdominal visceral fat accumulation. We divided both 6‐week male control and SPORTS rats into two groups, which were fed either normal diet or high fat and sucrose (HFS) diet for 16 weeks. At the end of diet treatment, retroperitoneal fat was collected for western blotting and histological analysis. Food intake was not different among the groups, but SPORTS rats showed significantly lower weight gain than control rats in both diet groups. After 10 weeks of diet treatment, glucose tolerance tests (GTTs) revealed that SPORTS rats had increased insulin sensitivity. Furthermore, SPORTS rats had lower quantities of both abdominal fat and plasma triglyceride (TG). In abdominal fat, elevated ACC Ser‐79 phosphorylation was observed in SPORTS rats and suppressed by an antagonist of β‐adrenergic receptor (AR), propranolol, or an inhibitor of AMPK, Compound C. From these results, high level of Epi induced ACC phosphorylation mediated through β‐AR and AMPK signaling pathways in abdominal visceral fat of SPORTS rats, which may contribute to reduce abdominal visceral fat accumulation and increase insulin sensitivity. Our results suggest that β‐AR‐regulated ACC activity would be a target for treating lifestyle‐related diseases, such as obesity.  相似文献   

20.
The aim of this study was to investigate the mechanism of the cytotoxic effect of β‐bungarotoxin (β‐BuTX), a presynaptic neurotoxin, on rat cerebellar granule neurons (CGNs). The maturation of CGNs is characterized by the prominent dense neurite networks that became fragmented after treatment with β‐BuTX, and this cytotoxic effect of β‐BuTX on CGNs was in a dose‐ and time‐dependant manner. The cytotoxic effect of β‐BuTX was found to be more potent than other toxins, such as α‐BuTX, cardiotoxin, melittin, and Naja naja atra venom phospholipase A2. Meanwhile, undifferentiated neuroblastoma neuronal cell lines, IMR‐32 and SK‐N‐MC, and astrocytes were found to be resistant to β‐BuTX. These results indicated that only the mature CGNs were sensitive to β‐BuTX insults. None of the following chemicals: antioxidants, K+‐channel activator, K+‐channel antagonists, intracellular Ca2+ chelator, Ca2+‐channel blockers, NMDA receptor antagonists, and nitric oxide synthase inhibitor tested, were able to reduce β‐BuTX‐induced cytotoxicity. However, secretory type phospholipase A2 inhibitors (glycyrrhizin and aristolochic acid) and a free radical scavenger (5,5‐dimethyl pyrroline N‐oxide, DMPO) could attenuate not only β‐BuTX‐induced cytotoxicity but also ROS production and caspase‐3 activation. These data suggest that phospholipase A2 activity of β‐BuTX may be responsible for free radical generation and caspase‐3 activation that accounts for the observed cytotoxic effect. It is proposed that the CGNs can be a useful tool for studying interactions of the molecules on neuronal plasma membrane with β‐BuTX that mediates the specific cytotoxicity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号