首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobic methanotrophs from the coastal thermal springs of Lake Baikal   总被引:1,自引:0,他引:1  
The number, activity, and diversity of aerobic methanotrophic bacteria in the sediments of three coastal thermal springs of Lake Baikal were analyzed. The average number of methanotrophs was 103–104 cells per 1 cm3 of sediment. The highest number of methanotrophs (108 cells/cm3 of silt) and the highest potential rate of methane uptake [7.7 nmol CH4/(cm3 day)] were revealed in sediments from the Sukhaya thermal spring. The methods of molecular ecology (DGGE, FISH, analysis of pmoA gene fragments) showed the predominance in most enrichment cultures of methanotrophs of type II, i.e., of the genera Methylocystis and Methylosinus. In only one enrichment culture (from the Sukhaya thermal spring), a type I methanotroph was revealed; its similarity to Methylococcus capsulatus Bath did not exceed 80%. These results demonstrate a widespread occurrence and high activity of the aerobic methanotrophic community in the coastal thermal springs of Lake Baikal.  相似文献   

2.
3.
The interaction effect of co-existence of toluene and CH4 on community and activity of methanotrophs and toluene-degrading bacteria was characterized in three consortia enriched with CH4 and toluene (MT), toluene (T), and CH4 (M), respectively, in this study. The CH4 oxidation activity in the enrichment culture of MT was significantly lower than that of M at the end of the experiment (P?=?0.001). The toluene degradation rate could be enhanced by continuous addition of CH4 and toluene in the initial days, but it was inhibited in the later days. Phylogenetic analysis of 16S rRNA genes showed that Proteobacteria and Bacteroidetes were dominant in the three enriched consortia, but the community of methanotrophs and toluene-degrading bacteria was significantly affected by the co-existence of CH4 and toluene. Both Methylosinus (91.8 %) and Methylocystis (8.2 %) were detected in the enrichment culture of MT, while only Methylocystis species were detected in M. The toluene-degrading bacteria including Burkholderia, Flavobacteria, Microbacterium, and Azoarcus were all detected in the enrichment culture of T. However, only Azoarcus was found in the enrichment culture of MT. Significantly higher contents of extracellular polymeric substances polysaccharose and protein in the enrichment culture of MT than that of T and M suggested that a higher environmental stress occurred in the enrichment culture of MT.  相似文献   

4.
The production and oxidation of methane and diversity of culturable aerobic methanotrophic bacteria in the water column and upper sediments of the meromictic oligotrophic Lake Gek-Gel (Azerbaijan) were studied by radioisotope, molecular, and microbiological techniques. The rate of methane oxidation was low in the aerobic mixolimnion, increased in the chemocline, and peaked at the depth where oxygen was detected in the water column. Aerobic methanotrophic bacteria of type II belonging to the genus Methylocystis were identified in enrichment cultures obtained from the chemocline. Methane oxidation in the anaerobic water of the monimolimnion was much more intense than in the aerobic zone. However, below 29–30 m methane concentration increased and reached 68 μM at the bottom. The highest rate of methane oxidation under anaerobic conditions was revealed in the upper layer of bottom sediments. The rate of methane oxidation significantly exceeding that of methane production suggests a deep source of methane in this lake.  相似文献   

5.
The influence of NH4+ on microbial CH4 oxidation is still poorly understood in landfill cover soils. In this study, effects of NH4+ addition on the activity and community structure of methanotrophs were investigated in waste biocover soil (WBS) treated by a series of NH4+-N contents (0, 100, 300, 600 and 1200 mg kg−1). The results showed that the addition of NH4+-N ranging from 100 to 300 mg kg−1 could stimulate CH4 oxidation in the WBS samples at the first stage of activity, while the addition of an NH4+-N content of 600 mg kg−1 had an inhibitory effect on CH4 oxidation in the first 4 days. The decrease of CH4 oxidation rate observed in the last stage of activity could be caused by nitrogen limitation and/or exopolymeric substance accumulation. Type I methanotrophs Methylocaldum and Methylobacter, and type II methanotrophs (Methylocystis and Methylosinus) were abundant in the WBS samples. Of these, Methylocaldum was the main methanotroph in the original WBS. With incubation, a higher abundance of Methylobacter was observed in the treatments with NH4+-N contents greater than 300 mg kg−1, which suggested that NH4+-N addition might lead to the dominance of Methylobacter in the WBS samples. Compared to type I methanotrophs, the abundance of type II methanotrophs Methylocystis and/or Methylosinus was lower in the original WBS sample. An increase in the abundance of Methylocystis and/or Methylosinus occurred in the last stage of activity, and was likely due to a nitrogen limitation condition. Redundancy analysis showed that NH4+-N and the C/N ratio had a significant influence on the methanotrophic community in the WBS sample.  相似文献   

6.
Oxidation of methane by methanotrophs, Methylomicrobium album and Methylocystis sp., was measured at several initial concentrations of H2S and NH3 in the headspace of stoppered flasks, at the same initial concentration of methane as sole carbon and energy source: 15 % (v/v). No effect was observed at 0.01 % (v/v) H2S and 0.025 % (v/v) NH3 in gas phase but over 0.05 and 0.025 % (v/v), respectively, they inhibited the oxidation of methane. The effect of H2S was stronger in Methylocystis sp. and both microorganisms were similarly affected by NH3. Depending on their concentrations in gas phase, H2S and NH3 can thus affect the rate of oxidation of methane and biomass growth of both methanotrophs.  相似文献   

7.
Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.  相似文献   

8.
Samples from diverse upland soils that oxidize atmospheric methane were characterized with regard to methane oxidation activity and the community composition of methanotrophic bacteria (MB). MB were identified on the basis of the detection and comparative sequence analysis of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. MB commonly detected in soils were closely related to Methylocaldum spp., Methylosinus spp., Methylocystis spp., or the “forest sequence cluster” (USC α), which has previously been detected in upland soils and is related to pmoA sequences of type II MB (Alphaproteobacteria). As well, a novel group of sequences distantly related (<75% derived amino acid identity) to those of known type I MB (Gammaproteobacteria) was often detected. This novel “upland soil cluster γ” (USC γ) was significantly more likely to be detected in soils with pH values of greater than 6.0 than in more acidic soils. To identify active MB, four selected soils were incubated with 13CH4 at low mixing ratios (<50 ppm of volume), and extracted methylated phospholipid fatty acids (PLFAs) were analyzed by gas chromatography-online combustion isotope ratio mass spectrometry. Incorporation of 13C into PLFAs characteristic for methanotrophic Gammaproteobacteria was observed in all soils in which USC γ sequences were detected, suggesting that the bacteria possessing these sequences were active methanotrophs. A pattern of labeled PLFAs typical for methanotrophic Alphaproteobacteria was obtained for a sample in which only USC α sequences were detected. The data indicate that different MB are present and active in different soils that oxidize atmospheric methane.  相似文献   

9.
Bivalve mollusks Bathymodiolus asoricus and Bathymodiolus puteoserpentis collected from the Rainbow and Logachev hydrothermal fields during dives of the Mir 1 and Mir 2 deep-sea manned submersibles were studied. Rates of methane oxidation and carbon dioxide assimilation in mussel gill tissue were determined by radiolabel analysis. During oxidation of 14CH4, radiocarbon was detected in significant quantities not only in carbon dioxide but also in dissolved organic matter, most notably 14C-formate and 14C-acetate, occurring in a 2 : 1 ratio. Activities of hexulose-phosphate synthase, phosphoribulokinase, and ribulose 1,5-bisphosphate carboxylase were shown in the soluble fraction of gill tissue cells. At the same time, no activity of hydroxypyruvate reductase—the key enzyme of the serine pathway of C1-assimilation—was detected. The results of PCR amplification using genetic probes for membrane-bound methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF) attest to the presence of the genes of these enzymes in the total DNA extracted from gill samples. However, no appropriate PCR responses were obtained with the mmoX primer system, which is a marker for soluble methane monooxygenase. All samples studied showed amplification with primers for the genera Methylobacter and Methylosphaera. At the same time, no genes specific to the genera Methylomonas, Methylococcus, Methylomicrobium, or MethylosinusandMethylocystis were detected. Electron microscopic examinations revealed the presence of two groups of endosymbiotic bacteria in the mussel gill tissue. The first group was represented by large cells possessing a complex system of cytoplasmic membranes, typical of methanotrophs of morphotype I. The other type of endosymbionts, having much smaller cells and lacking intracellular membrane structures, is likely to be constituted by sulfur bacteria.  相似文献   

10.
In methane-rich environments, methane-oxidizing bacteria usually occur predominantly among consortia including other types of microorganisms. In this study, artificial coal bed gas and methane gas were used to enrich mixed methanotrophic cultures from the soil of a coal mine in China, respectively. The changes in microbial community structure and function during the enrichment were examined. The microbial diversity was reduced as the enrichment proceeded, while the capacity for methane oxidation was significantly enhanced by the increased abundance of methanotrophs. The proportion of type II methanotrophs increased greatly from 7.84 % in the sampled soil to about 50 % in the enrichment cultures, due to the increase of methane concentration. After the microbial community of the cultures got stable, Methylomonas and Methylocystis became the dominant type I and type II methanotrophs, while Methylophilus was the prevailing methylotroph. The sequences affiliated with pigment-producing strains, Methylomonas rubra, Hydrogenophaga sp. AH-24, and Flavobacterium cucumis, could explain the orange appearance of the cultures. Comparing the two cultures, the multi-carbon sources in the artificial coal bed gas caused more variety of non-methanotrophic bacteria, but did not help to maintain the diversity or to increase the quantity and activity of methanotrophs. The results could help to understand the succession and interaction of microbial community in a methane-driven ecosystem.  相似文献   

11.
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska''s interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.  相似文献   

12.
Root-associated methanotrophic bacteria were enriched from three common aquatic macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. At least seven distinct taxa belonging to groups I and II were identified and presumptively assigned to the genera Methylosinus, Methylocystis, Methylomonas, and Methylococcus. Four of these strains appeared to be novel on the basis of partial 16S ribosomal DNA sequence analysis. The root-methanotroph association did not appear to be highly specific, since multiple methanotrophs were isolated from each of the three plant species. Group II methanotrophs were isolated most frequently; though less common, group I isolates accounted for three of the seven distinct methanotrophs. Apparent Km values for methane uptake by representative cultures ranged from 3 to >17 μM; for five of the eight cultures examined, apparent Km values agreed well with apparent Km estimates for plant roots, suggesting that these strains may be representative of those active in situ.  相似文献   

13.
Methylocystis sp. strain SC2 is an aerobic type II methanotroph isolated from a highly polluted aquifer in Germany. A specific trait of the SC2 strain is the expression of two isozymes of particulate methane monooxygenase with different methane oxidation kinetics. Here we report the complete genome sequence of this methanotroph that contains not only a circular chromosome but also two large plasmids.  相似文献   

14.
The 16S rRNA and pmoA genes from natural populations of methane-oxidizing bacteria (methanotrophs) were PCR amplified from total community DNA extracted from Lake Washington sediments obtained from the area where peak methane oxidation occurred. Clone libraries were constructed for each of the genes, and approximately 200 clones from each library were analyzed by using restriction fragment length polymorphism (RFLP) and the tetrameric restriction enzymes MspI, HaeIII, and HhaI. The PCR products were grouped based on their RFLP patterns, and representatives of each group were sequenced and analyzed. Studies of the 16S rRNA data obtained indicated that the existing primers did not reveal the total methanotrophic diversity present when these data were compared with pure-culture data obtained from the same environment. New primers specific for methanotrophs belonging to the genera Methylomonas, Methylosinus, and Methylocystis were developed and used to construct more complete clone libraries. Furthermore, a new primer was designed for one of the genes of the particulate methane monooxygenase in methanotrophs, pmoA. Phylogenetic analyses of both the 16S rRNA and pmoA gene sequences indicated that the new primers should detect these genes over the known diversity in methanotrophs. In addition to these findings, 16S rRNA data obtained in this study were combined with previously described phylogenetic data in order to identify operational taxonomic units that can be used to identify methanotrophs at the genus level.  相似文献   

15.
Atmospheric methane is degraded by both photooxidation and, in topsoils, by methanotrophic bacteria, but this may not totally account for the global sink of this greenhouse gas. Topsoils are a prominent source of airborne bacteria, which can degrade some organic atmospheric compounds at rates similar to photooxidation. Although airborne methanotrophs would have direct access to atmospheric methane, their presence and activity in the atmosphere has not been investigated so far. We enriched airborne methanotrophs from air and rainwater and showed that they oxidized methane at atmospheric concentration. The majority of seven OTUs, detected using pmoA gene clone libraries, were affiliated to the type II methanotrophic genera Methylocystis and Methylosinus. Furthermore, 16S rRNA gene clone libraries revealed the presence of OTUs affiliated with the genera Hyphomicrobium and Variovorax, members of which can stimulate methane oxidation by yet unidentified mechanisms. Simulating cloud-like conditions revealed that although both low pH and the presence of common cloud-borne organics negatively affected methane oxidation, airborne methanotrophs were able to degrade atmospheric methane in most cases. We demonstrate here for the first time that viable methanotrophic bacteria are present in air and rain and thus expand our knowledge on the global distribution of methanotrophs to include the atmosphere. The fact that they can degrade methane to below atmospheric concentrations when inoculated into artificial cloud water leads to an important possible effect of these organisms: the atmosphere may not only function as a medium for microbial dissemination, but also as a site of active microbial methane turnover.  相似文献   

16.
Forest soils are a major biological sink for atmospheric methane, yet the identity and physiology of the microorganisms responsible for this process remain unclear. Although members of the upland soil cluster α (USCα) are assumed to represent methanotrophic bacteria adapted to the oxidation of the trace level of methane in the atmosphere and to be an important sink of this greenhouse gas, so far they have resisted isolation. In particular, the question of whether the atmospheric methane oxidizers are able to obtain all their energy and carbon solely from atmospheric methane still waits to be answered. In this study, we performed stable-isotope probing (SIP) of RNA and DNA to investigate the assimilation of (13) C-methane and (13) C-acetate by USCα in an acidic forest soil. RNA-SIP showed that pmoA mRNA of USCα was not labelled by (13) C of supplemented (13) C methane, although catalysed reporter deposition - fluorescence in situ hybridization (CARD-FISH) targeting pmoA mRNA of USCα detected its expression in the incubated soil. In contrast, incorporation of (13) C-acetate into USCαpmoA mRNA was observed. USCαpmoA genes were not labelled, indicating that they had not grown during the incubation. Our results indicate that the contribution of alternative carbon sources, such as acetate, to the metabolism of the putative atmospheric methane oxidizers in upland forest soils might be substantial.  相似文献   

17.
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and 13C-DNA stable-isotope probing (SIP) to measure methane (CH4) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH4 oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated 13C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH4 oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating 13C in 16S rDNA; however, its phylogenetic similarity to other CO2-utilizing archaea probably indicates that this organism is not directly involved in CH4 oxidation in peat.  相似文献   

18.
Methane-oxidizing bacteria (MOB) have long been used as an important biological indicator for oil and gas prospecting, but the ecological characteristics of MOB in hydrocarbon microseep systems are still poorly understood. In this study, the activity, distribution, and abundance of aerobic methanotrophic communities in the surface soils underlying an oil and gas field were investigated using biogeochemical and molecular ecological techniques. Measurements of potential methane oxidation rates and pmoA gene copy numbers showed that soils inside an oil and gas field are hot spots of methane oxidation and MOB abundance. Correspondingly, terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of pmoA genes also revealed considerable differences in the methanotrophic community composition between oil and gas fields and the surrounding soils. Principal component analysis ordination furthermore indicated a coincidence between elevated CH4 oxidation activity and the methanotrophic community structure with type I methanotrophic Methylococcus and Methylobacter, in particular, as indicator species of oil and gas fields. Collectively, our results show that trace methane migrated from oil and gas reservoirs can considerably influence not only the quantity but also the structure of the methanotrophic community.  相似文献   

19.
Abstract Methane production and methane oxidation potential were measured in a 30 cm peat core from the Moorhouse Nature Reserve, UK. The distribution of known groups of methanogens and methane oxidizing bacteria throughout this peat core was assessed. Using 16S rRNA gene retrieval and functional gene probing with genes encoding key proteins in methane oxidation and methanogenesis, several major groups of microorganisms were detected. Methane production and oxidation was detected in all depths of the peat core. PCR amplification and oligonucleotide probing experiments using DNA isolated from all sections of the peat core detected methanotrophs from the groups Methylosinus and Methylococcus and methanogens from the groups Methanosarcinaceae, Methanococcaceae, and Methanobacteriaceae. 16S rDNA sequences amplified with the Methylosinus-specific primer were shown to have a high degree of identity with 16S rDNA sequences previously detected in acidic environments. However, no methanogen sequences were detected by the probes available in this study in the sections of the peat core (above 7 cm) where the majority of methanogenesis occurred, either because of low methanogen numbers or because of the presence of novel methanogen sequences. Received: 9 March 1999; Accepted: 21 June 1999  相似文献   

20.
When cells of a type II methanotrophic bacterium (Methylocystis strain LR1) were starved of methane, both the Km(app) and the Vmax(app) for methane decreased. The specific affinity (aos) remained nearly constant. Therefore, the decreased Km(app) in starved cells was probably not an adjustment to better utilize low-methane concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号