首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two effective strains of green gram rhizobia S24 (slow growing and Hup+) and M11 (fast growing and Hup-) were tested for leghemoglobin production in nodules and effectivity on six species of cow pea miscellany hosts. Both strains nodulate green gram [Vigna radiata (L.) (Wilczek)], black gram [Vigna mungo (L.) (Hepper)], cow pea [Vigna unguiqulata (L.)], moth bean [Vigna aconitifolia (Jacq.) (Marechel)], Cluster bean [Cyamopsis tetragonoloba (L.) (Taub.)] and pigeon pea [Cajanus cajan (L.)]. In all these hosts, nodules formed by strain M11 contained 1.5 to 2 times more leghemoglobin than the nodules formed by strain S24. Gel electrophoresis of nodule contents of different host species showed a high concentration of a fast-moving ferricoxy leghemoglobin in the nodules of plants inoculated with strain M11 as compared to that of strain S24. Strain M11, however, was relatively less effective than strain S24 on black gram, cow pea and moth bean and was at par with the later on green gram, cluster bean and pigeon pea. Hydrogen recycling ability of the strain S24 was observed in nodules of all the host species. The effective functioning of strain S24 at low levels of leghemoglobin suggests an involvement of recycling hydrogenase in maintaining an appropriate oxidation-reduction potential in nodules.Abbreviations Lb Leghemoglobin - Cvr cultivar  相似文献   

2.
Twenty-five Rhizobium strains were isolated from root nodules of Astragalus spp. (10), Hedysarum alpinum (7), Glycyrrhiza pallidiflora (3) and Ononis arvensis (5). The sensitivity of these strains to bacteriophages of Rhizobium loti, R. meliloti, R. galegae and R. leguminosarum was studied. Phages specific to R. loti strains were shown to induce the phage lysis of several Astragalus, Hedysarum and Ononis rhizobia. Ten R. loti strains tested for nodulation abilities on the plant hosts under investigation were able to develop nitrogen-fixing nodules on the Ononis arvensis roots. On the other hand, rhizobia from Ononis and Glycyrrhiza could form an effective symbiosis with Lotus corniculatus plants, so these bacteria are considered to belong to the Rhizobium loti taxon. Bacterial strains isolated from Astragalus and Hedysarum were observed to cross-nodulate their plant hosts as well as Oxytropis campestris, Glycyrrhiza uralensis and Ononis arvensis plants, whereas they could not nodulate Lotus plants. It is concluded that these Rhizobium strains comprise a cross-inoculation group related to Rhizobium loti. ei]{gnR O D}{fnDixon}  相似文献   

3.
Faba bean (Vicia faba) plants were inoculated with rhizobia and then their sap was infected with broad bean mottle bromovirus (BBMV) or bean yellow mosaic potyvirus (BYMV) in a field experiment. Both viral infections significantly decreased shoot and root dry weight, number of nodules, nodule dry weight, numbers of flowers and pods/plant, total plant N, grain yield and N2 fixation. However, inoculation withRhizobium leguminosarum significantly increased all these parameters, both in healthy and virus-infected plants. Although BYMV was more destructive than BBMV, inoculation with rhizobia could be used, with other control measures, to limit damage by both viruses.The authors are with the Department of Biochemistry and Soil Science, Faculty of Agriculture, Shambat, Sudan.  相似文献   

4.
Nodulation of common bean was explored in six oases in the south of Tunisia. Nineteen isolates were characterized by PCR–RFLP of 16S rDNA. Three species of rhizobia were identified, Rhizobium etli, Rhizobium gallicum and Sinorhizobium meliloti. The diversity of the symbiotic genes was then assessed by PCR–RFLP of nodC and nifH genes. The majority of the symbiotic genotypes were conserved between oases and other soils of the north of the country. Sinorhizobia isolated from bean were then compared with isolates from Medicago truncatula plants grown in the oases soils. All the nodC types except for nodC type p that was specific to common bean isolates were shared by both hosts. The four isolates with nodC type p induced N2-fixing effective nodules on common bean but did not nodulate M. truncatula and Medicago sativa. The phylogenetic analysis of nifH and nodC genes showed that these isolates carry symbiotic genes different from those previously characterized among Medicago and bean symbionts, but closely related to those of S. fredii Spanish and Tunisian isolates effective in symbiosis with common bean but unable to nodulate soybean. The creation of a novel biovar shared by S. meliloti and S. fredii, bv. mediterranense, was proposed.  相似文献   

5.
Summary Physiological and symbiotic characteristics were identified in fast-growing (FG)Rhizobium japonicum. Carbon nutritional patterns linked these rhizobia to other FG rhizobia. They were able to use hexoses, pentoses, disaccharides, trioses, and organic acids for growth, but they were unable to use dulcitol or citrate. These rhizobia produced acid with all carbon sources except intermediates of the Krebs cycle. FGR. japonicum showed no vitamin requirements and were tolerant to 1% NaCl but not to 2%. They nodulated cowpea, pigeon pea, and mung bean but not peanut. Effective, nitrogen-fixing symbioses were observed only with cowpea and pigeon pea. In addition, FGR. japonicum formed effective symbioses with Asian-type soybeans. We concluded that although the physiological characteristics of FGR. japonicum were similar to other FG rhizobia, their symbiotic properties were similar to slow-growing rhizobia of the cowpea miscellany.  相似文献   

6.
Three slow-growingBradyrhizobium japonicum (G3, USDA-110 and KUL-150) of diverse origins and two fast-growing strains ofRhizobium fredii (USDA-192 and USDA-193) were tested with a cropped soybean (Glycine max L. Merrill) cultivar, two cowpeas (Vigna unguiculata), one mung-bean (Phaseolus radiata), one winged-bean (Psophocarpus tetragonolobus) and one field bean (Phaseolus vulgaris) varieties.TheR. fredii strains nodulated and fixed Nitrogen as effectively as the strains ofB. japonicum in a modern european soybean cultivar, namely Fiskeby V. The other western bred soybeans tested were not nodulated by theseR. fredii strains. All of the soybean rhizobia produced nodules in both cowpeas and in mung-bean; theR. fredii strains showed effective N2-fixation in the cowpeas, particularly USDA-193, yielding shoot dry weights greater than those from theB. japonicum. The symbiotic performance of theR. fredii strains with soybean and other legumes indicated that they should be placed in an intermediate group between the slow-growingB. japonicum and cowpearhizobium sp.The hydrogen uptake activites suggested a possible host effect on the expression of such genes in one out of theB. japonicum strains tested. Furthermore, the slow-growing rhizobia showed significantly higher nitrate-reduction than theR. fredii in the nodules.  相似文献   

7.
Plant genotypes that limit nodulation by indigenous rhizobia while nodulating normally with inoculant-strain nodule occupancy in Phaseolus vulgaris. In this study, eight of nine Rhizobium tropici strains and six of 15 Rhizobium etli strains examined, showed limited ability to nodulate and fix nitrogen with the two wild P. vulgaris genotypes G21117 and G10002, but were effective in symbiosis with the cultivated bean genotypes Jamapa and Amarillo Gigante. Five of the R. etli strains restricted in nodulation by G21117 and G10002 produced an alkaline reaction in yeast mannitol medium. In a competition experiment in which restricted strains were tested in 1:1 mixtures with the highly effective R. etli strain CIAT632, the restricted strains produced a low percentage of the nodules formed on G2117, but produced over 40% of the nodules formed on Jamapa. The interaction of the four Rhizobium strains with the two bean genotypes, based on the percentage of nodules formed, was highly significant (P<0.001).  相似文献   

8.
<p>The diversity and taxonomic relationships of 83 bean-nodulating rhizobia indigenous to Ethiopian soils were characterized by PCR-RFLP of the internally transcribed spacer (ITS) region between the 16S and 23S rRNA genes, 16S rRNA gene sequence analysis, multilocus enzyme electrophoresis (MLEE), and amplified fragment-length polymorphism. The isolates fell into 13 distinct genotypes according to PCR-RFLP analysis of the ITS region. Based on MLEE, the majority of these genotypes (70%) was genetically related to the type strain of Rhizobium leguminosarum. However, from analysis of their 16S rRNA genes, the majority was placed with Rhizobium etli. Transfer and recombination of the 16S rRNA gene from presumptively introduced R. etli to local R. leguminosarum is a possible theory to explain these contrasting results. However, it seems unlikely that bean rhizobia originating from the Americas (or Europe) extensively colonized soils of Ethiopia because Rhizobium tropici, Rhizobium gallicum, and Rhizobium giardinii were not detected and only a single ineffective isolate of R. etli that originated from a remote location was identified. Therefore, Ethiopian R. leguminosarum may have acquired the determinants for nodulation of bean from a low number of introduced bean-nodulating rhizobia that either are poor competitors for nodulation of bean or that failed to survive in the Ethiopian environment. Furthermore, it may be concluded from the genetic data presented here that the evidence for separating R. leguminosarum and R. etli into two separate species is inconclusive.  相似文献   

9.
Analysis of genetic diversity among indigenous rhizobia and its symbiotic effectiveness with soybean cultivar is important for development of knowledge about rhizobial ecology. In India, little is known about the genetic resources and diversity of rhizobia nodulating soybean. Indigenous bradyrhizobia isolated from root nodules of soybean plants, collected from traditional cultivating regions of two states (Madhya Pradesh and Uttar Pradesh) of India, were screened for bacteriophage sensitivity to identify successful broad host range symbiotic effectivity. Of 172 rhizobial isolates, 91 showed sensitivities to eight lytic phages and form ten groups on the basis of sensitivity patterns. The genetic diversity of 23 isolates belonging to different phage groups was assessed along with that of strains USDA123 and USDA94 by the restriction fragment length polymorphism (RFLP) analysis of 16S rDNA, intergenic spacer (IGS) (16S–23S rDNA), and DnaK regions. RFLP analysis of 16S rDNA formed 5 groups, whereas 19 and 9 groups were revealed by IGS and the DnaK genes, respectively. The IGS regions showed many amplified polymorphic bands. Nine isolates which revealed high RFLP polymorphism in the abovementioned regions (16S rRNA, IGS, DnaK) were used for 16S rRNA sequence analyses. The results indicate that taxonomically, all isolates were related to Rhizobium etli, Bradyrhizobium spp., and Bradyrhizobium yuanmingense. The doubling time of isolates varied from 9 h (MPSR155) to 16.2 h (MPSR068) in YM broth. Five isolates which did not show cross infectivity with isolated phage strains were studied for symbiotic efficiency. All isolates showed broad host range symbiotic effectiveness forming effective nodules on Vigna mungo, Vigna radiata, Vigna unguiculata, and Cajanus cajan. The present study provides information on genetic diversity and host range symbiosis of indigenous soybean rhizobia typed by different phages.  相似文献   

10.
Bacillus thuringiensis (Bt) isolates were present on the phylloplanes of chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), pea (Pisum sativum) and mung bean (Vigna radiata). Bt index (ratio of the number of Bt colonies to the total number of spore-forming colonies per g of leaves) differed significantly among these plants, with the highest (0.20) in the chickpea phylloplane, followed by pigeon pea (0.17). Bt population of the chickpea phylloplane varied with plant age, being maximal in 45-day-old plants. Diversity was observed among Bt isolates for growth (up to 10-fold difference), antibiotic resistance, PCR product profile and toxicity to Helicoverpa armigera. Two isolates with high activity towards H. armigera were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Kishinevsky  B. D.  Nandasena  K. G.  Yates  R. J.  Nemas  C.  Howieson  J.G. 《Plant and Soil》2003,251(1):143-153
Cultural, physiological and biochemical properties of 18 strains of rhizobia isolated from root nodules of the forage legume H. spinosissimum were compared with those of rhizobia from the related species H. coronarium (15 strains) and H. flexuosum (four strains). On the basis of 43 characteristics the 37 strains of Hedysarum rhizobia could be divided into two groups by numerical analysis. The H. spinosissimum rhizobia formed the first group and the second group comprised the strains from H. coronarium and H. flexuosum. The reference Rhizobium leguminosarum bv. viceae strain 250A was clustered with the rhizobia from H. coronarium and H. flexuosum. By contrast Bradyrhizobium sp. (Arachis) reference strain 280A was not clustered with any of the strains tested, indicating that the H. spinosissimum rhizobia differ from both Rhizobium and Bradyrhizobium. Serological data also discriminate between H. spinosissimum and H. coronariumrhizobia but not between the latter and H. flexuosum strains. The strains tested exhibit a high degree of specificity for nodulation and nitrogen fixation. We also determined the16SrRNA gene sequence of H. spinosissimum rhizobia (four strains), H. coronarium (two strains) and H. flexuosum (two strains) and found that the four H. spinosissimum isolates share a 98% identity among each other in this region but they showed less than 92% identity to the H. coronarium and H. flexuosum isolates. The H. spinosissimum isolates were closely related to both Mesorhizobium loti and M. ciceri, sharing 97% identity with each species.  相似文献   

12.
Phosphate solubilization activity of rhizobia native to Iranian soils   总被引:1,自引:0,他引:1  
Agricultural soils in Iran are predominantly calcareous with very low plant available phosphorus (P) content. In addition to their beneficial N2-fixing activity with legumes, rhizobia can improve plant P nutrition by mobilizing inorganic and organic P. Isolates from different cross-inoculation groups of rhizobia, obtained from Iranian soils were tested for their ability to dissolve inorganic and organic phosphate. From a total of 446 rhizobial isolates tested for P solubilization by the formation of visible dissolution halos on agar plates, 198 (44%) and 341(76%) of the isolates, solubilized Ca3(PO4)2 (TCP) and inositol hexaphosphate (IHP), respectively. In the liquid Sperber TCP medium, phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas fluorescens) used as positive controls released an average of 268.6 mg L−1 of P after 360 h incubation. This amount was significantly (P < 0.05) higher than those observed with all rhizobia tested. The group of Rhizobium leguminosarum bv. viciae mobilized in liquid TCP Sperber medium significantly (P < 0.05) more P (197.1 mg L−1 in 360 h) than other rhizobia tested,. This group also showed the highest dissolution halo on the TCP solid Sperber medium. The release of soluble P was significantly correlated with a drop in the pH of the culture filtrates indicating the importance of acid production in the mobilization process. None of the 70 bradyrhizobial isolates tested was able to solubilize TCP. These results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.  相似文献   

13.
T. A. Lie 《Plant and Soil》1981,61(1-2):125-134
Summary Pisum sativum ecotype fulvum forms ineffective nodules with Rhizobium strains, isolated from effective nodules of the cultivated pea in Europe. Rhizobium strains isolated from nodules of fulvum peas in Israel are fully effective on this host plant, but in association with the cultivated pea they induce nodules of poor N2-fixing activity. The distribution of these fulvum-specific Rhizobium strains is restricted to regions where the fulvum pea occurs naturally. Rhizobium strains from other geographical regions induce mainly ineffective, or partially effective nodules on fulvum plants.A wide genetic variation, with regard to symbiotic response to a standard set of Rhizobium strains, was demonstrated in the fulvum plants collected in Israel. Based on variation in N2-fixation three groups of plants can be distinguished. These plants offer the possibility for the study of host-genetic control on symbiotic nitrogen fixation.  相似文献   

14.
Recognition of Leguminous Hosts by a Promiscuous Rhizobium Strain   总被引:4,自引:2,他引:2       下载免费PDF全文
The lima bean (Phaseolus lunatus L.) and the pole bean (Phaseolus vulgaris L.) are nodulated by rhizobia of two different cross-inoculation groups. Rhizobium sp. 127E15, a cowpea-type Rhizobium, can induce effective nodules on the lima bean and partially effective nodules on the pole bean. Rhizobium phaseoli 127K14 can induce effective nodules on the pole bean but does not reciprocally nodulate the lima bean. Root hairs of the lima bean when inoculated with Rhizobium sp. 127E15 showed tip curling and swelling and infection thread formation as observed by light microscopy and scanning electron microscopy. When lima bean root hairs were inoculated with R. phaseoli 127K14, no host-specific responses were observed. Pole bean root hairs that had been inoculated with R. phaseoli 127K14 or Rhizobium sp. 127E15 also showed tip curling and swelling and infection thread formation. Colonization of lima bean root hairs by Rhizobium sp. 127E15 and pole bean root hairs by R. phaseoli 127K14 or Rhizobium sp. 127E15 appeared to involve the elaboration of microfibrils. This study showed that when Rhizobium sp. 127E15 nodulates a host of a different cross-inoculation group, it elicits the same specific host responses as it does from a host of the same cross-inoculation group.  相似文献   

15.
Summary Only legumes of the cowpea cross-inoculation group, including the winged bean (Psophocarpus tetragonolobus) were found to form nodules in a temperate zone soil with no previous history of legume cropping. Isolates from root nodules from uninoculated winged beans grown in the field only nodulated legumes in the cowpea cross-inoculation group.Rhizobium japonicum formed ineffective nodules with the winged bean. Contribution No.5852, Scientific Article No.A2802 of the Maryland Agricultural Experiment Station, Department of Botany.  相似文献   

16.
Snap bean fields in 12 of the 25 governorates of Egypt were surveyed to determine the distribution and taxonomy of snap bean-nodulating rhizobia. Nodulation rates in the field were very low, indicating that Egyptian soils do not have sufficient numbers of snap bean-compatible Rhizobium spp. A total of 87 rhizobial isolates were assayed on the most commonly grown cultivars in order to identify the most effective strains. The five most effective isolates (R11, R13, R28, R49 and R52) were fast-growing and utilized a wide range of carbon and nitrogen sources. A phylogenetic assignment of these strains by analysis of the 16S ribosomal RNA gene suggested that all fell within the Rhizobium etliRhizobium leguminosarum group. Strains R11, R49 and R52 all clustered with other identified R. etli strains, while strains R13 and R28 were more distinct. The distinctness of R13 and R28 was supported by physiological characteristics, such as their ability to utilize citrate, erythritol, dulcitol and lactate. Strains R13 and R28 also yielded the highest plant nitrogen content of all isolates.The highly effective strains isolated in this study, in particular strains R13 and R28, are promising candidates for improving crop yields. The data also suggested that these two strains represented a novel sub-group within the R. etli–R. leguminosarum group. As snap bean is a crop of great economic value to Egypt, the identification of highly effective rhizobial strains adapted to Egyptian soils, such as strains R13 and R28, is of great interest.  相似文献   

17.
Polyamines in Nodules from Various Plant-Microbe Symbiotic Associations   总被引:4,自引:0,他引:4  
Polyamine compositions of root or stem nodules collected fromvarieties of nitrogen-fixing leguminous (22 species) and non-leguminous(5 species) plants were investigated. Relatively high concentrationsof homospermidine were observed in root or stem nodules of allthe leguminous plants. Based on the ratio of homospermidineto spermidine, legume nodules were generally characterized intotwo major groupes; one containing almost equal amounts of homospermidineand spermidine, and the other a high homospermidine/spermidineratio. Root nodules from pigeon pea (Cajanus cajan L. Millsp)was the only exception which exhibited very low homospermidine/spermidineratio. Amongst the legumes, nodules of adzuki bean (Vigna angularis),siratro (Macroptilium atropurpureum DC. Urb.), pea (Pisum sativumL.), and hairly vetch (Vicia hirsuta S.F. Gray) were rich indiamine putrescine. Such characters of nodule polyamine compositionwere inherent characteristics of each legume species, and notrelated to the type of infected rhizobia (Rhizobium or Bradyrhizobium).In contrast to herbaceous leguminous plants, nonleguminous woodyplants, which symbiotically associate with actinomycete Frankiaspecies, contained little polyamines in their root nodules.Root nodules of non-leguminous Parasponia andersonii infectedby bradyrhizobia were found to contain large quantities of putrescineand homospermidine. No significant differences in polyaminecomposition were observed between root and stem nodules bothin Aeschynomene indica and Sesbania rostrata. (Received June 13, 1994; Accepted August 17, 1994)  相似文献   

18.
Since Phaseolus vulgaris (L) is poorly nodulated in all regions of Tunisia where this crop is grown, the response of common-bean lines CocoT and Flamingo to inoculation with reference Rhizobium tropici CIAT 899 or native rhizobia, namely Sinorhizobium fredii 1a6, Rhizobium etli 12a3, and Rhizobium gallicum 8a3, was studied in a field station. Since R. etli 12a3 was found to be the most effective native rhizobium, it was subsequently compared with R. tropici CIAT 899 in a broader study in two stations over 3 years. A significant interaction between bean and rhizobia was observed for nodule number, shoot dry weight, grain yield, and contents of nitrogen and chlorophyll. The native rhizobia was more efficient than CIAT899 for Flamingo, though not for CocoT. The Enzyme-linked immunosorbent assay technique was used with polyclonal antibody to assess the occupancy in nodule and persistence in soil of the inoculated rhizobia. For both stations the nodule occupancy was 100% during the first year for each rhizobium, but during the next 2 years, between 7 and 15% of nodules were formed by the rhizobia inoculated in the neighboring plot. It is concluded that the first-year inoculation is sufficient to maintain an adequate rate of nodulation during three growth cycles, and that the native R etli can be recommended for the common-bean inoculation in similar soils of Tunisia.  相似文献   

19.
Summary Soil samples from several European countries; Sweden, the Netherlands, Spain, Italy and Greece, contained rhizobial populations capable of forming an effective symbiosis with the cultivated pea cv. Rondo from the Netherlands. The range of variation among the European Rhizobium strains, as expressed on pea cv. Rondo, was not so large and almost the same variation could be found within the rhizobial population within each country. Superior Rhizobium strains for the Dutch pea were not restricted to soils from the Netherlands but were also found in those from Sweden and Italy.Soils from Turkey and Israel also contained Rhizobium strains capable of nodulating pea cv. Rondo. However, the genetic variation among these Middle East Rhizobium strains was much larger than that of the European strains. When tested on pea cv. Rondo the majority of the Middle East strains belonged to the medium or low effective classes and only a few strains were comparable with European Rhizobium strains.Dutch Rhizobium strains induced effective nodules on both the Dutch pea cv. Rondo and the Swedish cv. L 110. However, in association with a Turkish Rhizobium strain effective nodules were formed on pea cv. Rondo and ineffective nodules on cv. L 110.We suggest that the genetic uniformity of EuropeanR. leguminosarum strains is the result of selection and domestication of Rhizobium strains originally derived from the gene centres of the pea plant.  相似文献   

20.
Great genetic diversity was revealed among 75 rhizobal isolates associated with Vicia faba grown in Chinese fields with AFLP, ARDRA, 16S rDNA sequencing, DNA–DNA hybridization, BOX-PCR and RFLP of PCR-amplified nodD and nodC. Most of the isolates were Rhizobium leguminosarum, and six isolates belonged to an unnamed Rhizobium species. In the homogeneity analysis, the isolates were grouped into three clusters corresponding to (1) autumn sowing (subtropical) region where the winter ecotype of V. faba was cultivated, (2) spring sowing (temperate) region where the spring ecotype was grown, and (3) Yunnan province where the intermediate ecotype was sown either in spring or in autumn. Nonrandom associations were found among the nod genotypes, genomic types and ecological regions, indicating an epidemic symbiotic gene transfer pattern among different genomic backgrounds within an ecological region and a relatively limited transfer pattern between different regions. Conclusively, the present results suggested an endemic population structure of V. faba rhizobia in Chinese fields and demonstrated a novel rhizobium associated with faba bean. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号