首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To study the impact of high atmospheric nitrogen deposition on the leaching of NO3 and NH4+ beneath forest and heathland vegetation, investigations were carried out in adjacent forest and heathland ecosystems in Northwest Germany. The study area is subjected to high deposition of nitrogen ranging from 15.9 kg ha–1 yr–1 in bulk precipitation to 65.3 kg ha–1 yr–1 beneath a stand of Pinus sylvestris L. with NH4–N accounting for 70–80% of the nitrogen deposited. Considerable leaching of nitrogen compounds from the upper horizons of the soil, mostly as nitrate, occurred at most of the forest sites and below a mixed stand of Calluna vulgaris (L.) Hull. and Erica tetralix, but was low in a Betula pubescens Ehrh. swamp forest as well as beneath Erica tetralix L. wet heath and heath dominated by Molinia caerulea(L.) Moench. Ground water concentrations of both NO3–N and NH4–N did not exceed 1 mg L–1 at most of the sites investigated.  相似文献   

2.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

3.
Summary Agro-ecosystems have developed from mixed- and multiple-cropping systems with relatively closed N cycles to intensively managed monocultures with large N inputs in the form of commercial fertilizers. Cultivation of increasingly larger areas of land has resulted in substantial losses of soil organic matter and N. Also, the move from slash and burn agriculture to intensively ploughed systems has resulted in losses through increased erosion.The use of N fertilizers has increased rapidly toca. 60 Tg N yr–1 (1980/81), which is equivalent to at least 40% of the N fixed biologically in all terrestrial systems and 36% more than is fixed in all croplands. On a global scale, the major losses of N from agro-ecosystems are estimated to be: harvest, 30 Tg; leaching, 2 Tg; erosion, 2–20 Tg; denitrification 1–44 Tg; and ammonia volatilization, 13–23 Tg. However, the data base is very crude and several estimates may be wrong by as much as one order of magnitude.Additions of N fertilizers have both direct and indirect effects on soil microorganisms. The possible importance of such effects is briefly discussed and a specific example is given on long-term effects on soil microbial biomass and nitrification rates in 27-year-old cropping systems with different N additions: (i) 0 kg N ha–1 yr–1, (ii) 80 kg N ha–1 yr–1, (iii) farmyard manureca. 80 kg N ha–1 yr–1.Few detailed N budgets exist for agro-ecosystems, despite its major importance as a limiting plant nutrient and the large losses of N from such systems. In conclusion, preliminary nitrogen budgets for four cropping systems (barley receiving 0 or 120 kg N ha–1 yr–1; meadow fescue ley with 200 kg N ha–1 yr–1 and a lucerne ley) are presented, with special attention to N flow through the soil organisms.Keynote address  相似文献   

4.
Overstory species influence the distribution and dynamics of nutrients in forest ecosystems. Ecosystem-level estimates of Ca, Mg, and K pools and cycles in 50-year old Douglas-fir and red alder stands were used to determine the effect of overstory composition on net cation removal from the mineral soil, i.e. cation export from the soil in excess of additions. Net cation removal from Douglas-fir soil was 8 kg Ca ha–1 yr–1, 1 kg Mg ha–1 yr–1, and 0.3 kg K ha–1 yr–1. Annual cation export from soil by uptake and accumulation in live woody tissue and O horizon was of similar magnitude to leaching in soil solution. Atmospheric deposition partially off-set export by adding cations equivalent to 28–88% of cation export. Net cation removal from red alder soil was 58 kg Ca ha–1 yr–1, 9 kg Mg ha–1 yr–1, and 11 kg K ha–1 yr–1. Annual cation accumulation in live woody tissue and O horizon was three times greater than in Douglas-fir, while cation leaching in soil solution was five to eight times greater. The lack of excessive depletion of exchangeable cations in the red alder soil suggests that mineral weathering, rather than exchangeable cations, was the source of most of the removed cations. Nitric acid generated during nitrification in red alder soil led to high rates of weathering and NO3-driven cation leaching.  相似文献   

5.
On a heavily karstified site in the Northern Limestone Alps (Austria), nutrient budgets and leaching in Norway spruce stands were investigated along a chronosequence (clearcut, 10-year-old plantation (25% cover of planted and naturally regenerated spruce and larch, 75% weed cover) and mature stand). The soils were Lithic Leptosols on very pure limestone. Nutrient fluxes were studied during three growth periods (4–5 months each). Despite of inorganic nitrogen inputs from precipitation between 5 and 10 kg ha–1, inorganic nitrogen output with seepage water from the mature stand and the regeneration plot was only 0.5–1.2 kg ha–1 during these periods. In the first and second growth periods after clearcut, inorganic N fluxes with seepage increased to 20 and 30 kg ha–1, respectively, declining in the third growth period to 8 kg ha–1. DON output during the growth period was between 3 and 6 kg ha–1 in the mature stand and 7 and 11 kg ha–1 in the clearcut as well as in the regeneration plot. K output rates achieved 30 kg ha–1 in the first, 20 kg ha–1 in the second and 9 kg ha–1 in the third growth period after clear-cutting while output rates during the growth periods were less than 2 kg ha–1 in the mature stand and in the regeneration plot. K pools in the humus layer were only 150–210 kg ha–1, total K pools including above and below ground biomass in the mature stand were 360 kg ha–1. Thus, post-harvest hydrological losses comprise a substantial depletion of K for this specific ecosystem. Since precipitation is high in this area (1400 mm a–1), forest growth is limited by nutrient rather than by water supply. Needle analyses already indicate a deficient potassium supply. Harvesting and post-harvesting losses of K in combination with elevated nitrogen deposition may have negative influences on the stability of forest stands on the studied sites.  相似文献   

6.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

7.
Huber  C.  Oberhauser  A.  Kreutzer  K. 《Plant and Soil》2002,240(1):3-11
Laboratory and field measurements of the flux of ammonia to forest floor canopies of spruce and beech stands at the Höglwald site in southern Bavaria are reported. Measurements were performed with an open chamber method. A linearity between ammonia concentration and ammonia flux from the atmosphere to the ground floor canopy was detected. Deposition of ammonia showed no saturation even at air concentrations up to 50 g NH3 m–3 air. Temperature, water content and the moss layer of the ground floor canopy had a minor influence on the deposition velocity in laboratory experiments. Deposition velocity of ammonia was higher to the spruce (1.3 cm s–1), and limed spruce ground floor canopy (1.17 cm s–1) compared to the beech stand (0.79 cm s–1). In field studies, a diurnal course of the deposition velocity was detected with highest velocities in midday and minor during night times, but not in the climatic chamber. The flux of ammonia to the ground floor canopy was estimated of app. 10 kg N ha–1 yr–1 for the soil under spruce, 9 kg N ha–1 yr–1 for the limed spruce and 6 kg N ha–1yr–1 for the soil under beech. The fluxes are interpreted as fluxes from the atmosphere to the ground canopies of the stands.  相似文献   

8.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

9.
N mineralisation was investigated in the mor humus layer of a podzol at a forested catchment area of Saarejärve Lake in Eastern Estonia. The investigated areas were pine (Rhodococcumunderstorey) and spruce (Vaccinium understorey) stands, which are permanent sample plots of an integrated monitoring network. The seasonal pattern of net N mineralisation was studied by incubating undisturbed cores of mor humus (0–8 cm) in buried polyethylene bags in situ. Samples were collected and incubated between July 1996 and April 1998. The period of incubation was approximately 1 month, except for wintertime when incubation lasted till thawing of ground (5 months). The amounts of mineral nitrogen formed during monthly incubations in vegetation period vary considerably (0.4–8.7 kg ha–1). About 70% of the variation of net ammonification could be explained by environmental factors - temperature, initial moisture and pH. Ammonium was the dominant form of mineral nitrogen, which is typical for mor humus. The rate of nitrification was very low, and most of the annual net nitrification occurred during just one or two months (May–June, October) depending on site and year. Measured annual net N mineralisation was 29.2 kg ha–1 for the spruce stand and 23.6 kg ha–1 for the pine stand. These measures were found to be in good accordance with other N-fluxes in the ecosystem.  相似文献   

10.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   

11.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

12.
The stable isotope15N was added as (15NH4)2SO4 to throughfall water for one year, to study the fate of the deposited nitrogen at different levels of N deposition in two N saturated coniferous forests ecosystems in the Netherlands. The fate of the15N was followed at high-N (44–55 kg N ha–1 yr–1) 1) and low-N (4–6 kg N ha–1 yr–1) deposition in plots established under transparent roofs build under the canopy in a Douglas fir (Pseudotsuga menziesii (Mirb.) Franco.) and Scots pine (Pinus sylvestris L.) forest.The applied15N was detectable in needles and twigs, the soil and soil water leaching below the rooting zone (90 cm depth). Total15N recovery in major ecosystem compartments was 71–100% during two successive growing seasons after the start of a year-round15N application to throughfall-N. Nine months after the year-round15N application, the15N assimilated into tree biomass was 29–33% of the15N added in the Douglas fir stand and less than 17% in the Scots pine stand. At the same time total15N retention in the soil (down to 70 cm) of the high-N plots was about 37% of the deposited15NH4-N, whereas 46% and 65% of the15N was found in the soil of the low-N deposition plots at the Douglas fir and Scots pine stand, respectively. The organic layers accounted for 60% of the15N retained in the soil. The total N deposition exceeded the demand of the vegetation and microbial immobilization. Total15N leaching losses within a year (below 90 cm) were 10–20% in the high-N deposition plots in comparison to 2–6% in the lowered nitrogen input plots. Relative retention in the soil and vegetation increased at lower N-input levels.Species differences in uptake and tree health seem to contribute to lower15N recoveries in the Scots pine trees compared to the Douglas fir trees. The excessive N deposition and resulting N saturation lead to conditions were the health and functioning of biota were negatively influenced. At decreased N deposition, lower leaching losses together with increased soil and plant retention indicated a change in the fate of the15N deposited. This may have resulted from changes in ecosystem processes, and thus a shift along the continuum of N saturation to N limitation.  相似文献   

13.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

14.
Casals  P.  Romanyà  J.  Cortina  J.  Fons  J.  Bode  M.  Vallejo  V. R. 《Plant and Soil》1995,168(1):67-73
We studied Nitrogen (N) transformations in Pinus sylvestris forest stands in the foothills of the SE Pre-Pyrenees (NE Spain). Plots were selected in two contrasting aspects (two plots per aspect) and N supply rate was measured by the resin-core incubation technique once every three months. N leaching through litter layers (L and F horizons) was evaluated by 5 zero-tension lysimeters in each plot. NH4 +-N, NO3 --N and soluble organic-N were determined in all solutions. N supply rate showed a clear seasonal pattern. Ammonification and nitrification were segregated in space and in time. While ammonification showed a peak in spring, nitrification was higher in summer. There was evidence suggesting that nitrification occurs mostly in A1 horizon. Nitrification rates differed significantly among plots. N supply rate was 12.7–23.5 kg N·ha-1·yr-1 but it did not differ between aspects or plots. Inorganic-N leached through litter layers was 14–17 kg N·ha-1·yr-1, and represented a high proportion of N supply rate. Organic-N leached through litter layers (27.8–37.0 kg N·ha-1·yr-1) was higher than leached inorganic-N. However, in most cases organic-N did not represent a high proportion of changes in soluble organic-N pools in H and A1 horizons (about 240 kg N·ha-1·yr-1). This large decrease in soluble organic-N was much greater than the increase in inorganic-N. The possible fate of these large amounts of organic-N is discussed.  相似文献   

15.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

16.
A mixed pasture comprising of buffel grass and a legume siratro was studied under field condition for a two-year period to know the fodder yield increase, nitrogen fixation and nitrogen balance with and without the inoculation of VA mycorrhiza to grass and Rhizobium to legume component.15N dilution technique was followed using labelled ammonium sulphate. The data showed that during the first year of the above study combined inoculation of VA mycorrhiza and Rhizobium to grass and legume respectively significantly increased the total dry matter (DM) (23,900 kg ha–1 yr–1) and total N content (308 kg ha–1 yr–1) of the mixed pasture over the uninoculated mixture. However, the above increase due to combined inoculation was maximum during second year with respect to DM yield (28,200 kg ha–1 yr–1), but the total N harvested through grass-legume mixture was comparatively lower than the first year (297 kg ha–1 yr–1). The amount of biologically fixed N was highest in the first year (79 kg ha–1 yr–1) and showed a very drastic reduction at the end of second year (39 kg ha–1 yr–1). A positive nitrogen balance was observed in the grass-legume mixture irrespective of inoculation of VA mycorrhiza and/or Rhizobium.  相似文献   

17.
In a 2-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim one experimental and nine commercial maize cultivars were compared for their ability to utilize soil nitrate and to reduce related losses of nitrate through leaching. Soil nitrate was monitored periodically in CaCl2 extracts and in suction cup water. Nitrate concentrations in suction water were generally higher than in CaCl2 extracts. Both methods revealed that all cultivars examined were able to extract nitrate down to a soil depth of at least 120 cm (1988 season) or 150 cm (1987 season). Significant differences among the cultivars existed in nitrate depletion particularly in the subsoil. At harvest, residual nitrate in the upper 150 cm of the profile ranged from 73–110 kg N ha–1 in 1987 and from 59–119 kg N ha–1 in 1988. Residual nitrate was closely correlated with nitrate losses by leaching because water infiltration at 120 cm soil depth started 4 weeks after harvest (1987) or immediately after harvest (1988) and continued until early summer of the following year. The calculated amount of nitrate lost by leaching was strongly influenced by the method of calculation. During the winter of 1987/88 nitrate leaching ranged from 57–84 kg N ha–1 (suction cups) and 40–55 kg N ha–1 (CaCl2 extracts), respectively. The corresponding values for the winter of 1988/89 were 47–79 and 20–39 kg N ha–1, respectively. ei]Section editor: B E Clothier  相似文献   

18.
Transformations and fluxes of N were examined in three forested sites located along a gradient of soil texture in the coastal forests of the Waquoit Bay watershed on Cape Cod. Total N leaching losses to ground water were 0.5 kg ha-1 yr-1 in the loamy sand site and 1.5 kg ha-1 yr-1 in the fine sand site. Leaching loss to groundwater was not measured in the coarse sand site due to the prohibitive depth of the water table but total N leaching loss to 1m depth in the mineral soil was 3.9 kg ha-1 yr-1. DON accounted for most of the leaching losses below the rooting zone (77–89%) and through the soil profile to ground water (60%–80%). Differences in DON retention capacity of the mineral soil in the sites along the soil texture gradient were most likely related to changes in mineral soil particle surface area and percolation rates associated with soil texture. Forests of the watershed functioned as a sink for inorganic N deposited on the surface of the watershed in wet and dry deposition but a source of dissolved organic N to ground water and adjoining coastal ecosystems.  相似文献   

19.
The responses of litter decomposition to nitrogen (N) and phosphorus (P) additions were examined in an old-growth tropical forest in southern China to test the following hypotheses: (1) N addition would decrease litter decomposition; (2) P addition would increase litter decomposition, and (3) P addition would mitigate the inhibitive effect of N addition. Two kinds of leaf litter, Schima superba Chardn. & Champ. (S.S.) and Castanopsis chinensis Hance (C.C.), were studied using the litterbag technique. Four treatments were conducted at the following levels: control, N-addition (150 kg N ha−1 yr−1), P-addition (150 kg P ha−1 yr−1) and NP-addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). While N addition significantly decreased the decomposition of both litters, P addition significantly inhibited decomposition of C.C., but did not affect the decomposition of S.S. The negative effect of N addition on litter decomposition might be related to the high N-saturation in this old-growth tropical forest; however, the negative effect of P addition might be due to the suppression of “microbial P mining”. Significant interaction between N and P addition was found on litter decomposition, which was reflected by the less negative effect in NP-addition plots than those in N-addition plots. Our results suggest that P addition may also have negative effect on litter decomposition and that P addition would mitigate the negative effect of N deposition on litter decomposition in tropical forests.  相似文献   

20.
Field studies were conducted to assess the turnover and the leaching of nitrogen in arable soils of Lower Saxony (NW Germany). The mean surplus N (difference between N inputs by fertilization and N export by the yield; 146 field plots) from 1985–1988 amounted to 38 kg ha-1 yr-1 in fine textured (clay, loam, silt) and to 98 kg ha-1 yr-1 in coarse (sandy) soils. Leaching of nitrate calculated by a simple functional model for simulation of the N regime over the winter period (i.e. mineralization and leaching) was 16 kg ha-1 in the fine and 63 kg N ha-1 in coarse soils (mean values of the winter periods 1985–1988 from 256 plots).Before the 1960s, the depth of the Ap horizons rarely exceeded 25 cm in arable soils of the former FRG. During the last three decades, ploughing depth has increased to at least 35 cm. The mass balance calculations for total N after ploughing to 35 cm in loess soils of southern Lower Saxony (105 farm plots) yielded a mean increase in total N by about 900 kg ha-1 in 20 years. With respect to soil organic matter equilibria, N accumulation will continue for at least another 10 years on 67% of the examined farm plots. This study suggests that long term N immobilization is one of the most important sinks for nitrogen in arable soils of Germany. For simulation of the N dynamics over the growing season and for long time periods total nitrogen dynamics need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号