首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mice immunized with syngeneic cells transfected with cloned genes coding for HLA class I molecules could recognize the human MHC Ag in the context of their own H-2 molecules. We obtained CTL clones from DBA/2 mice (H-2d) which had been immunized with P815 cells (a mastocytoma of DBA/2 origin) expressing either HLA-A2 or HLA-A3 or two different molecules containing recombined sequences of HLA-A2 and HLA-A3. Fourteen of these clones recognized a synthetic peptide corresponding to the region 170-185 of HLA-A2 in the context of H-2Kd. Moreover, from their activity on P815 cells expressing HLA-Cw3, two subpatterns could be distinguished: subpattern Cw3+, defined by those clones which lysed P815-Cw3, and subpattern Cw3- defined by those clones which did not lyse P815-Cw3. By testing the activity of clones of each subpattern on a series of modified synthetic peptides, we were able to define two epitopes on the same 170-185 peptide of HLA-A2. One of them was dependent on amino acids at positions 173 and 177, whereas the other was dependent on amino acid 177 alone. By using competition experiments, we were also able to define an agretopic region strongly dependent on the amino acid at position 178. Furthermore, experiments with L cells expressing molecules containing recombined sequences between H-2Kd and H-2Dd demonstrated the determinant role of residues 152, 155, and 156 from H-2Kd in the presentation to murine T cells of the 170-185 peptide of HLA-A2.  相似文献   

2.
The cytolytic responses of either normal (non transgenic), HLA-B7 (single transgenic) or HLA-B7 x human beta 2 microglobulin (double transgenic) DBA/2 mice induced by transfected HLA-Cw3 P815 (H-2d) mouse mastocytoma cells were compared, to evaluate whether the expression of an HLA class I molecule in responder mice would favor the emergence of HLA-specific, H-2-unrestricted CTL. Only 8 of 300 HLA-Cw3-specific CTL clones tested could selectively lyse HLA-Cw3-transfected cells in an H-2-unrestricted manner, all having been isolated after hyperimmunization of double transgenic mice. These clones also lysed HLA-Cw3+ human cells. Unexpectedly, the lysis of the human but not that of the murine HLA-Cw3 cells was inhibited by Ly-2,3-specific mAb. Despite significant expression of HLA-B7 class I molecules on transgenic lymphoid cells, including thymic cells, limiting dilution analysis and comparative study of TCR-alpha and -beta gene rearrangements of the eight isolated clones (which suggested that they all derived from the same CTL precursor) indicated that the frequency of HLA-Cw3-specific H-2 unrestricted cytotoxic T lymphocytes remained low (even in HLA-B7 x human beta 2-microglobulin double transgenic mice). This suggests that coexpression of HLA class I H and L chain in transgenic mice is not the only requirement for significant positive selection of HLA class I-restricted cytotoxic mouse T lymphocytes.  相似文献   

3.
Mice injected with syngeneic cellulose-conjugated immunoglobulins (Ig) containing antibodies to sheep red blood cells (SRBC) develop a specific non-responsiveness to SRBC. Such animals demonstrate a sharp decrease not only in the formation of anti-SRBC antibody producers but also of the cells secreting antigen-dependent nonspecific Ig. The inhibition of both these processes is antigen-specific. It is suggested that inhibition of the cells forming antigen-dependent nonspecific Ig is due to suppression of either hypothetic inductors or precursors of these cells expressing an idiotype spectrum similar to that of anti-SRBC antibody producers.  相似文献   

4.
Hybrid cell lines were established from fusions between lipopolysaccharide- (LPS) stimulated C57BL/6J spleen cells and MPC-11 tumor cells (45.6TG1.7, abbreviated M45), and were tested for their ability to immunize semiallogeneic mice against a parental tumor challenge. These hybrids were tumorigenic in syngeneic (BALB/c X C57BL/6J) F1 (CB6F1) mice but did not grow in semiallogeneic (BALB/c X A/J) F1 (CAF1) mice. All hybrids express both parental major histocompatibility antigens (H-2b and H-2d) as detected by indirect immunofluorescence and by their ability to function as either stimulators or targets for allogeneic cytotoxic lymphocytes (CTL). M45 tumor-associated antigens (TAA) were expressed on the hybrid surface as shown by their ability to act as either stimulators or targets for syngeneic CTL specific for M45 TAA. Immunization of semiallogeneic CAF1 mice with the hybrids i.p. followed by a challenge with M45 tumor cells resulted in extended survival when compared to untreated mice or animals immunized i.p. with M45 tumor cells. This immunity was specific and was not due to an allogeneic effect; immunization with an unrelated H-2bd tumor, 70Z/3, or H-2bd B6D2F1 spleen cells or with semiallogeneic spleen cells plus M45 did not protect mice from M45 challenge. Interestingly, prophylactic priming with semiallogeneic hybrid tumor cells or parental myeloma cells led to M45-specific CTL and "help" for an in vitro CTL response; however, the degree of CTL priming by hybrid tumors was not augmented when compared to the level of CTL achieved with parental tumor alone. Hence, stimulation of CTL activity per se by hybrid tumor cells cannot explain the protective effect of hybrid tumor immunization. These studies nevertheless confirm that semiallogeneic hybrids, which we show express TAA and alloantigens, can be used to immunize mice against a lethal syngeneic myeloma tumor challenge.  相似文献   

5.
Summary Tumor-specific suppressor factor was prepared by injecting soluble membrane extracts of the syngeneic mastocytoma, P815, into DBA/2J mice 4 days prior to sacrifice. The suppressor factor was purified by passage of spleen extracts over an immunoadsorbent containing P815 membrane components. Antisera raised in syngeneic and allogeneic (C57Bl/6) mice by repeated injections of suppressor factor were tested. It was found that these antisera, but not their controls, were capable of absorbing out the suppressor factor. The antisera were also capable, in the presence of complement, of eliminating suppressor cells from suppressive spleen cell populations. However, the antisera were not capable of eliminating syngeneic tumor-specific in vitro-generated killer cells, indicating that the receptor molecules on suppressor and effector cells in this system are distinct from each other.  相似文献   

6.
7.
MHC class Ia-deficient mice (H2 Kb-/- Db-/-) inoculated with the intracellular pathogen Listeria monocytogenes (LM) displayed a three- to fourfold expansion of splenic CD8+ T cells 6 days following infection. Culture of these spleen cells in vitro gave rise to CTL that recognized LM-infected target cells and were restricted by the class Ib molecules, Qa1b and M3. Exposure of target cells to heat-killed LM (HKLM) rather than live bacteria did not result in CTL-mediated lysis. Target cells pulsed with three LM peptides known to bind M3, f-MIGWII, f-MIVTLF, and f-MIVIL, were recognized by effector cells from both B6 and Kb-/- Db-/- animals. In vivo analysis showed that B6 and Kb-/- Db-/- mice clear LM from the spleen and liver rapidly with similar kinetics, whereas TAP.1-/- mice, which are deficient in class Ia and Ib molecules, clear LM slowly upon infection. To establish the in vivo role of CD8+ T cells in Kb-/- Db-/- animals, we showed that depletion of such cells from the spleens of immune mice prevented the adoptive transfer of protective immunity to syngeneic recipients. Spleen cells from Kb-/- Db-/- mice were also capable of generating responses directed against syngeneic as well as allogeneic class Ia molecules in vitro. Thus, class Ia-deficient animals have a CD8+ T cell repertoire capable of recognizing both class Ia and class Ib molecules and can generate protective immunity to LM.  相似文献   

8.
To determine which viral molecule(s) is recognized by herpes simplex virus (HSV)-specific cytotoxic T lymphocytes (CTL), target cells were constructed which express individual HSV glycoproteins. A mouse L cell line, Z4/6, which constitutively expressed high levels of HSV type 2 (HSV-2) gD (gD-2) was isolated and characterized previously (D. C. Johnson and J. R. Smiley, J. Virol. 54:682-689, 1985). Despite the expression of gD on the surface of Z4/6 cells, these cells were not killed by anti-HSV-2 CTL generated following intravaginal infection of syngeneic mice. In contrast, parental Z4 or Z4/6 cells infected with HSV-2 were lysed. Furthermore, unlabeled Z4/6 cells were unable to block the lysis of HSV-2-infected labeled target cells. Cells which express HSV-1 gB (gB-1) were isolated by transfecting L cells with the recombinant plasmid pSV2gBneo, which contains the HSV-1 gB structural sequences and the neomycin resistance gene coupled to the simian virus 40 early promoter and selecting G418-resistant cell lines. One such cell line, Lta/gB15, expressed gB which was detected by immunoprecipitation and at the cell surface by immunofluorescence. Additionally, cells expressing HSV-1 gC (gC-1) or gE (gE-1) were isolated by transfecting Z4 cells, which are L cells expressing ICP4 and ICP47, with either the recombinant plasmid pGE15neo, which contains the gE structural sequences and the neomycin resistance gene, or pDC17, which contains the gC structural gene coupled to the gD-1 promoter. A number of G418-resistant cell lines were isolated which expressed gC-1 or gE-1 at the cell surface. Anti-HSV-1 CTL generated following footpad infection of syngeneic mice were unable to lyse target cells expressing gB-1 or gE-1. In contrast, target cells expressing very low levels of gC-1 were killed as well as HSV-1-infected target cells. Furthermore, infection of gC-1-transformed target cells with wild-type HSV-1 or a strain of HSV-1 that does not express gC did not result in a marked increase in susceptibility to lysis. These results suggest that murine class I major histocompatibility complex-restricted anti-HSV CTL recognize gC-1 but do not recognize gB, gD, or gE as these molecules are expressed in transfected syngeneic target cells. The results are discussed in terms of recent evidence concerning the specificity of antiviral CTL.  相似文献   

9.
Electrochemotherapy (ECT) is a new antitumour treatment which consists of delivering electric pulses to the tumour a few minutes after an intravenous injection of bleomycin. The antitumour efficacy of ECT is increased by local injections of interleukin 2 (IL2) in the oedema which appears at the site of the treated tumours. We have shown that tumour cells inoculated in syngeneic mice are rejected if IL2 secreting allo- or xenogeneic cells are co-injected with tumour cells. We report here the large increase of ECT therapeutical efficacy when allogeneic cells secreting IL2 are injected into the peri-tumoural oedema.  相似文献   

10.
Antigens encoded by MAGE genes are of particular interest for cancer immunotherapy because they are tumor specific and shared by tumors of different histological types. Several clinical trials are in progress with MAGE peptides, proteins, recombinant poxviruses, and dendritic cells (DC) pulsed with peptides or proteins. The use of gene-modified DC would offer the major advantage of a long-lasting expression of the transgene and a large array of antigenic peptides that fit into the different HLA molecules of the patient. In this study, we tested the ability of gene-modified DC to prime rare Ag-specific T cells, and we identified a new antigenic peptide of clinical interest. CD8(+) T lymphocytes from an individual without cancer were stimulated with monocyte-derived DC, which were infected with a second-generation lentiviral vector encoding MAGE-3. A CTL clone was isolated that recognized peptide EGDCAPEEK presented by HLA-Cw7 molecules, which are expressed by >40% of Caucasians. Interestingly, this new tumor-specific antigenic peptide corresponds to position 212-220 of MAGE-2, -3, -6, and -12. HLA-Cw7 tumor cell lines expressing one of these MAGE genes were lysed by the CTL, indicating that the peptide is efficiently processed in tumor cells and can therefore be used as target for antitumoral vaccination. The risk of tumor escape due to appearance of Ag-loss variants should be reduced by the fact that the peptide is encoded by several MAGE genes.  相似文献   

11.
Long-term syngeneic mouse cytolytic T lymphocyte (CTL) clones were obtained from DBA/2 (H2d) mice immunized with P815 (H2d) cells transfected with cloned human class I histocompatibility genes, HLA-CW3 or HLA-A24. Three distinct patterns of specificity were defined on P815 HLA transfectant target cells. One clone lysed HLA-CW3 but not -A24 transfectants, and a second lysed HLA-A24 but not -CW3 transfectant target cells. The third clone lysed P815 targets transfected with either HLA gene. None of the CTL clones lysed L cells (H2k) transfected with the same HLA genes or human targets that expressed these HLA specificities. Several lines of evidence indicated that recognition of HLA transfectants by these CTL clones was H2 restricted. First, lysis of P815 HLA transfectants could be inhibited by anti-H2Kd monoclonal antibody. In addition, the anti-P815-HLA CTL clones could lyse a (human X mouse) hybrid target that expressed both HLA class I and H2Kd antigens, but not a clonal derivative that no longer expressed H2Kd. The most direct evidence for H2-restricted recognition of P815-HLA transfectants by the syngeneic CTL clones was obtained by double transfection of mouse L cells (H2k) with both HLA and H2 class I genes. L cells transfected with HLA and H2Kd genes were susceptible to lysis by the same CTL clones that lysed the corresponding P815-HLA transfectant targets. Thus under certain conditions, CTL recognition of xenogeneic class I histocompatibility gene products can be restricted by other class I gene products.  相似文献   

12.
Semiallogeneic somatic hybrid cells (AB2) derived from fusion of a C57B1/6 chemically induced fibrosarcoma (MCB6-1) and a fibroblastic cell (A9) of C3H origin were used to immunize C57B1/6 mice against the parental MCB6-1 tumor cells. In vitro immune lymphocytes were directly cytotoxic against AB2 hybrid cells and A9 allogeneic parental cells, but could not lyse the syngeneic MCB6-1 parental tumor cells. Nevertheless, after a 4-day culture of these immune lymphocytes, a cytotoxic activity against the syngeneic MCB6-1 tumor cells appeared; expression of such a cytotoxic activity did not require the presence of stimulator cells (mitomycin-treated MCB6-1 tumor cells) during the culture. This cytotoxicity is mediated by T cells, as it was completely abrogated by treatment with anti-Thy 1–2 antiserum and complement. These results suggest that a maturation or a differentiation of immune T lymphocytes occurs during in vitro culture, and is necessary for the expression of antitumor cytotoxicity.  相似文献   

13.
Cytotoxic effector lymphocytes were induced by in vitro immunization of lymph node and spleen cells from AKR-mice (H-2k) and from BALB/c-mice (H-2d) to syngeneic SV40-transformed fibroblasts. The T cell-dependent cytotoxicity was specific for target cells expressing the same H2-specificity as the immunizing cells. Nontransformed fibroblasts as stimulator cells did not induce efficient cytotoxicity to transformed or nontransformed target cells. Incubation with phytohemagglutinin during the sensitization period modified the specificity of the T cell-mediated lysis of syngeneic SV40-transformed fibroblasts: allogeneic as well as syngeneic target cells were destroyed by these effector cells. However, the polyclonal stimulant activates preferentially cytotoxicity to H2-matched target cells. The in vitro generation of cytotoxic effector cells was restricted to living SV40-transformed fibroblasts as immunizing cells; it was not possible to immunize lymphocytes in the presence of membrane proteins prepared from the SV40-transformed cells. The cytotoxicity of the in vitro immunized lymphocytes was inhibited by incubation with membrane protein preparations from syngeneic or allogeneic SV40-transformed fibroblasts.  相似文献   

14.
Previous studies have shown that the lymphocytes of naive mice produce a strong primary CTL responses in vitro to human MHC class I Ag presented by HLA-transgenic mouse (TGM) cells. A limiting dilution (LD) assay was used to analyze this xenoreactive CTL repertoire in mice. Frequencies of HLA class I-specific CTL precursors (CTLp) were estimated in naive normal and HLA-B27.2-, -B27.5- and HLA-Cw3-double TGM (i.e., mice expressing HLA and human beta 2-microglobulin (hu beta 2m]. The xenoreactive CTLp frequencies were compared to frequencies of CTLp to H-2 alloantigens estimated in naive normal mice. The results showed that the frequencies of HLA class I-specific CTLp are comparable with those of alloreactive CTLp. This overlap in CTLp frequencies suggests that HLA class I xenoantigens are recognized by primary mouse CTL as allelic variants of H-2K and H-2D. This was confirmed in split well analysis by the observation that the xenoreactive response was not restricted by self-MHC of the responding mouse. Thus, primary HLA class I-specific mouse CTL clones recognized their target Ag regardless of whether they were expressed on H-2-mismatched mouse cells or on human cells. The frequencies of HLA class I-specific CTLp in HLA-TGM were comparable to those in normal mice. We propose that MHC allo- and xenoreactive CTL responses are not caused by the activation of CTLp specific for self-MHC plus peptide but to the activation of CTLp recognizing MHC allo- and xenoantigens directly or as peptides presented by their native MHC molecules.  相似文献   

15.
Studies of immune recognition of hybrid class I antigens expressed on transfected cells have revealed an apparent general requirement that the N(alpha 1) and C1(alpha 2) domains be derived from the same gene in order to preserve recognition by virus-specific H-2-restricted and allospecific T cells. One exception has been the hybrid DL antigen in which the N domain of H-2Ld has been replaced by that of H-2Dd. Cells bearing this molecule serve as targets for some virus and allospecific CTL. Because cells expressing the reciprocal hybrid LD (N domain of H-2Dd replaced by that of H-2Ld) antigen have not been available, it has not been possible to evaluate whether this exception stemmed from the relatedness of H-2Ld and H-2Dd or whether the DL antigen fortuitously preserved some function of the parent molecule as a rare exception. To assess this question, and to evaluate the contribution of the N and C1 domains of H-2Ld and H-2Dd to serologic and T cell recognition, we have constructed the reciprocal chimeric gene pLD (the N exon of H-2Ld substituted for that of H-2Dd), introduced this into mouse L cells by DNA-mediated gene transfer, and analyzed the expressed product biochemically, serologically, and functionally. Transformant L cells expressing either LD or DL antigens were both reactive with a number of anti-H-2Ld or anti-H-2Dd N/C1-specific monoclonal antibodies, indicating the preservation in the hybrid molecules of determinants controlled by discrete domains. Mab binding was generally greater with cells expressing hybrid DL antigen than with those transformants expressing LD molecules. Moreover, the amount of beta 2M associated with DL antigens was more than that associated with LD. Cells expressing hybrid DL antigens were recognized as targets by bulk and cloned allospecific anti-H-2Dd and anti-H-2Ld CTL, whereas cells expressing LD molecules were not recognized by any of the T cells tested. VSV-specific H-2Ld-restricted CTL failed to lyse VSV-infected targets expressing either DL or LD. These results indicate that T cell reactivity of cells expressing the DL hybrid antigen is an exception to the observed general requirement for class I antigens to possess matched N and C1 domains for functional T cell recognition by T cells restricted to parental antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The origins of "help" in rejection of syngeneic tumors by the CD8 T cell lineage was examined with a model tumor inappropriately expressing novel class I MHC and subject to cytolytic T cell (CTL)-mediated rejection. The requirement for CD4+ Th cells to induce CD8+ CTL effectors in vivo was investigated by using C3H mice selectively depleted of either CD4+ or CD8+ T cells. Rejection of the tumor was vigorous and indistinguishable from normal mice after depletion of CD4+ T cells in vivo. In contrast, in CD8+ T cell-depleted mice tumors grew progressively, confirming that T cells of the CD8+ lineage are required for a tumoricidal immune response, and cells of this lineage are sufficient for a primary response. Taken together, these results demonstrate that, in the absence of CD4+ T cells in vivo, unprimed cells of the CD8+ lineage are fully competent to mount an effective CTL immune response to syngeneic cells expressing novel class I Ag, consistent with the concept that only T cells with class I recognition specificity may be required to satisfy the need for both help and effector functions in the response.  相似文献   

17.
In our laboratory we have described a monoclonal antibody, B16G, which has been shown to bind to suppressive T cell factors (TsF) in DBA/2 mice. Therefore, B16G was used as a probe to identify T cell hybridomas secreting putative TsF. Hybridomas were obtained by the fusion of DBA/2 thymocytes stimulated in vivo by P815 tumor membrane extracts with the thymoma BW5147. One such hybridoma, A10, was selected and used for additional studies. From both the supernatants and ascites fluid of this hybrid a factor could be obtained that could specifically bind to both B16G and P815 antigen immunoadsorbent columns, and that scored positively with B16G in an ELISA after elution. Such reactivity could not be obtained from A10 supernatants or ascites absorbed over irrelevant columns, nor was it obtained from supernatants or ascites from other T cell hybrids that had scored B16G nonreactive in the original screening. In vivo studies indicated that affinity-purified A10 material injected into DBA/2J mice enhanced significantly the growth of P815 tumor cells, but not the growth of other DBA/2 syngeneic tumor lines such as L1210 or M-I. Additionally, this material did not inhibit the in vitro mixed leukocyte reaction (MLR) between DBA/2 splenocytes and allogeneic B10.BR target cells (unlike B16G purified material from whole DBA/2 spleens, which has been demonstrated to be suppressive in this type of MLR). Biochemical analysis of this tumor-specific TsF from A10 was undertaken; the native m.w. was found to be in the region of 80,000 and 90,000. Under reducing conditions, affinity-purified A10 TsF was found to resolve in SDS-PAGE as what appeared to be a heterodimer of 45,000 and 43,000. In most preparations, an associated molecule resolving at about 25,000 was observed. The implications of these observations are discussed.  相似文献   

18.
Immune isoantisera and hybridoma monoclonal autoantibodies against syngeneic C1300 neuroblastoma (NB) cells were produced from BALB/c mice. Isoantisera were obtained (i) from mice immunized with membrane preparations from cloned NB cells and (ii) from mice bearing NB tumors. After repetitive absorptions on several different syngeneic or allogeneic tumor cell lines and syngeneic normal kidney, liver, spleen, bone marrow, and brain mouse tissue powders, these sera still retained antibodies reacting with tissue-differentiation antigens present on both NB cells and normal nerve sympathetic cells on cryostat whole body sections of neonatal mice. Monoclonal autoantibodies against NB cells were the products of the fusion between plasmacytoma cells and spleen cells from mice bearing syngeneic NB tumors. These anti-NB monoclonal antibodies revealed a restricted spectrum of distinct alloantigenic specificities against syngeneic bone marrow, fetal and adult brain cells, and nerve sympathetic cells present on neonatal rather than adult mice. A mixture of four monoclonal antibodies, recognizing, respectively, an epitope of the Ia complex and three distinctive neuronal-restricted antigens, proved to be a powerful and specific probe for histological immunodiagnosis of neuroblastoma, on cryostat sections of NB tumors, metastases, and tumor-draining lymph nodes.  相似文献   

19.
NK cells are cytotoxic to virus-infected and tumor cells that have lost surface expression of class I MHC proteins. Target cell expression of class I MHC proteins inhibits NK cytotoxicity through binding to inhibitory NK receptors. In contrast, a similar family of activating NK receptors, characterized by the presence of a charged residue in their transmembrane portion and a truncated cytoplasmic tail, augment lysis by NK cells when ligated by an appropriate class I MHC protein. However, the class I MHC specificity of many of these activating NK receptors is still unknown. Here, we show enhanced lysis of HLA-Cw4 but not HLA-Cw6-expressing cells, by a subset of NK clones. This subset may express killer cell Ig-like receptor two-domain short tail number 4 (KIR2DS4), as suggested by staining with various mAb. It is still possible, however, that these clones may express receptors other than KIR2DS4 that might recognize HLA-Cw4. Binding of KIR2DS4-Ig fusion protein to cells expressing HLA-Cw4 but not to those expressing HLA-Cw6 was also observed. The binding of KIR2DS4-Ig to HLA-Cw4 is weaker than that of killer cell Ig-like receptor two-domain long tail number 1 (KIR2DL1)-Ig fusion protein; however, such weak recognition is capable of inhibiting lysis by an NK transfectant expressing a chimeric molecule of KIR2DS4 fused to the transmembrane and cytoplasmic portion of KIR2DL1. Residue alpha14 is shown to be important in the KIR2DS4 binding to HLA-Cw4. Implications of the role of the activating NK receptors in immunosurveillance are discussed.  相似文献   

20.
 Tumor-associated T cell epitopes are recognized by T cells in the context of determinants specified by class I loci. Since the rejection of foreign histocompatibility antigens is known to enhance tumor immunity, immunization with a cellular vaccine that combined the expression of both syngeneic and allogeneic class I determinants could have important immunological advantages over a vaccine that expressed either syngeneic or allogeneic determinants alone. To investigate this question in a mouse melanoma model system, we tested the immunotherapeutic properties of B16 melanoma × LM fibroblast hybrid cells in C57BL/6J mice with melanoma. Like C57BL/6J mice, B16 cells expressed H-2Kb class I determinants and (antibody-defined) melanoma-associated antigens. LM cells, of C3H mouse origin, formed H-2Kk determinants along with B7.1, a co-stimulatory molecule that can activate T cells. The B16 × LM hybrid cells co-expressed H-2Kb and H-2Kk class I determinants, B7.1 and the melanoma-associated antigens. C57BL/6J mice with melanoma, immunized with the semi-allogeneic hybrid cells, developed CD8-mediated melanoma immunity and survived significantly (P<0.005) longer than mice with melanoma immunized with a mixture of the parental cell types. The failure of melanoma immunity to develop in mice injected with the mixture of parental cells indicated that co-expression of the immunogenic determinants by the same cellular immunogen was necessary for an optimum immunotherapeutic effect. Augmented immunity to melanoma in mice immunized with the semi-allogeneic hybrid cells points toward an analogous form of therapy for patients with melanoma. Received: 19 May 1997 / Accepted: 23 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号